Advertisement

Journal of Statistical Physics

, Volume 167, Issue 6, pp 1586–1592 | Cite as

Classification of Particle Numbers with Unique Heitmann–Radin Minimizer

Article
  • 80 Downloads

Abstract

We show that minimizers of the Heitmann–Radin energy (Heitmann and Radin in J Stat Phys 22(3):281–287, 1980) are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence). The proof relies on the discrete differential geometry techniques introduced in De Luca and Friesecke (Crystallization in two dimensions and a discrete Gauss–Bonnet Theorem, 2016).

Keywords

Crystallization Wulff shape Heitmann–Radin potential Discrete differential geometry Energy minimization 

Notes

Acknowledgements

We are indebted to Michael Baake for pointing out to us the website [12] after attending a lecture on the work reported here. The research of LDL was funded, and that of GF partially supported, by the DFG Collaborative Research Center CRC 109 “Discretization in Geometry and Dynamics”.

References

  1. 1.
    Au Yeung, Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial. Differ. Equ. 44(1–2), 81–100 (2012)Google Scholar
  2. 2.
    Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. J. Nonlinear Sci. 27(2), 627–660 (2017)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet Theorem, preprint. arXiv:1605.00034 (2016)
  4. 4.
    Dobrushin, R.L., Kotecky, R., Shlosman, S.B.: The Wulff Construction: A Global Shape from Local Interactions. AMS, Providence (1992)MATHGoogle Scholar
  5. 5.
    Fonseca, I., Müller, S.: A uniqueness proof of the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119, 125–136 (1991)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Heitmann, R.C., Radin, C.: The ground states for sticky discs. J. Stat. Phys. 22(3), 281–287 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176(1), 250–254 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    Polyá, G., Szegó, G.: Problems and Theorems in Analysis I. Springer, Berlin (1991)MATHGoogle Scholar
  9. 9.
    Richthammer, T.: Translation-invariance of two-dimensional Gibbsian point processes. Commun. Math. Phys. 274(1), 81–122 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727–738 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Taylor, J.E.: Unique structure of solutions to a class of nonelliptic variational problems. In: Differential Geometry (Proc. Sympos. Pure. Math., Vol. XXVII), Part 1, pp. 419–427. AMS, Providence (1975)Google Scholar
  12. 12.
    The On-line Encyclopedia of Integer Sequences. www.oeis.org

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations