Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 792–805 | Cite as

Time Correlations in Mode Hopping of Coupled Oscillators

  • Mathias L. Heltberg
  • Sandeep Krishna
  • Mogens H. Jensen
Article

Abstract

We study the dynamics in a system of coupled oscillators when Arnold Tongues overlap. By varying the initial conditions, the deterministic system can be attracted to different limit cycles. Adding noise, the mode hopping between different states become a dominating part of the dynamics. We simplify the system through a Poincare section, and derive a 1D model to describe the dynamics. We explain that for some parameter values of the external oscillator, the time distribution of occupancy in a state is exponential and thus memoryless. In the general case, on the other hand, it is a sum of exponential distributions characteristic of a system with time correlations.

Keywords

Coupled oscillators Mode hopping Arnold tongues Poincare sections Time correlations 

References

  1. 1.
    Jensen, M.H., Kadanoff, L.P., Krishna, S.: Universal behaviour of coupled oscillators: lessons for biology preprint (2016)Google Scholar
  2. 2.
    Stavans, J., Heslot, F., Libchaber, A.: Fixed winding number and the quasiperiodic route to chaos in a convective fluid. Phys. Rev. Lett. 55, 596–599 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    Jensen, M.H., Bak, P., Bohr, T.: Complete devil’s staircase, fractal dimension and universality of mode-locking structure in the circle map. Phys. Rev. Lett. 50, 1637–1639 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    Jensen, M.H., Kadanoff, L.P., Libchaber, A., Procaccia, I., Stavans, J.: Global universality at the onset of Chaos: results of a forced Rayleigh Benard experiment. Phys. Rev. Lett. 55, 2798–2801 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    Jensen, M.H., Bak, P., Bohr, T.: Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps. Phys. Rev. A 30, 1960–1969 (1984)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Huygens, C.: A copy of the letter on this topic to the Royal Society of London appears in 1893. In: Nijhoff, M. (ed.) Ouevres Completes de Christian Huygens, vol. 5, p. 246. Societe Hollandaise des Sciences, The Hague (1989)Google Scholar
  7. 7.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  8. 8.
    Ramirez, J.P., Olvera, L.A., Nijmeijer, H., Alvarez, J.: The sympathy of two pendulum clocks: beyond Huygens’ observations. Sci. Rep. 6, 23580 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Addison-Wesley, Boston (1989)MATHGoogle Scholar
  10. 10.
    Brown, S.E., Mozurkewich, G., Gruner, G.: Subharmonic shapiro steps and devil’s-staircase behavior in driven charge-density-wave systems. Phys. Rev. Lett. 52, 2277–2380 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    Gwinn, E.G., Westervelt, R.M.: Frequency Locking, quasiperiodicity, and Chaos in Extrinsic Ge. Phys. Rev. Lett. 57, 1060–1063 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell Jr., J.E.: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Goldbeter, A.: Computational approaches to cellular rhythms”. Nature 420, 238–245 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Woller, A., Duez, H., Staels, B., Lefranc, M.: A mathematical model of the liver circadian clock linking feeding and fasting cycles to clock function. Cell Rep. 17, 1087–1097 (2016)CrossRefGoogle Scholar
  15. 15.
    Mondragon-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L., Hasty, J.: Entrainment of a population of synthetic genetic oscillators. Science 333, 1315–1319 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mengel, B., Hunziker, A., Pedersen, L., Trusina, A., Jensen, M.H., Krishna, S.: Modeling oscillatory control in NF-kB, p53 and Wnt signaling. Curr. Opin. Genet. Dev. 20, 656–664 (2010)CrossRefGoogle Scholar
  17. 17.
    Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The I\(\kappa \)B-NF-\(\kappa \)B signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Nelson, D.E., et al.: Oscillations in nf-\(\kappa \)b signaling control the dynamics of gene expression. Science 306, 704–708 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Krishna, S., Jensen, M.H., Sneppen, K.: Spiky oscillations in NF-kappaB signalling. Proc. Natl. Acad. Sci. 103, 10840–10845 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Tay, S., Kellogg, R.: Noise facilitates transcriptional control under dynamic inputs. Cell 160, 381–392 (2015)CrossRefGoogle Scholar
  21. 21.
    Heltberg, M.L., Kellogg, R.A., Krishna, S., Tay, S., Jensen, M.H.: Noise induces hopping between NF-\(\kappa \)B entrainment modes, Cell Syst. (2016)Google Scholar
  22. 22.
    Jensen, M.H., Krishna, S.: Inducing phase-locking and chaos in cellular oscillators by modulating the driving stimuli. FEBS Lett. 586, 1664–1668 (2012)CrossRefGoogle Scholar
  23. 23.
    Strogatz, S.H.: Dynamical Systems and Chaos, pp. 278–279. Westview Press, Cambridge (2000)Google Scholar
  24. 24.
    Sun, H., Scott, S.K., Showalter, K.: Uncertain destination dynamics. Phys. Rev. E 60(4), 3876 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: Attractor manipulation and robustness. Chaos 25(5) (2015)Google Scholar
  26. 26.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977). doi:10.1021/j100540a008 CrossRefGoogle Scholar
  27. 27.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mathias L. Heltberg
    • 1
    • 2
  • Sandeep Krishna
    • 1
    • 2
  • Mogens H. Jensen
    • 1
    • 2
  1. 1.The Niels Bohr InstituteUniversity of CopenhagenKøbenhavnDenmark
  2. 2.Simons Centre for the Study of Living MachinesNational Centre for Biological SciencesBangaloreIndia

Personalised recommendations