Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 626–635 | Cite as

Fluctuating Thermal Boundary Layers and Heat Transfer in Turbulent Rayleigh–Bénard Convection



We investigate the effect of fluctuations in thermal boundary layer on heat transfer in turbulent Rayleigh–Bénard convection for Prandtl number greater than one in the regime where the thermal dissipation rate is dominated by boundary layer contribution and in the presence of a large-scale circulating flow.


Turbulent convection Heat transfer Fluctuating boundary layers 



We thank P. Tong for sharing his experimental results with us. ESCC would like to dedicate this paper to the memory of Leo P. Kadanoff, who introduced this fascinating and rich problem of turbulent Rayleigh–Bénard convection to her while she was a Graduate Student at University of Chicago. The work of ESCC was supported by the Hong Kong Research Grants Council under Grant No. CUHK-400311.


  1. 1.
    Rayleigh, L.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32, 259 (1916)MATHGoogle Scholar
  2. 2.
    Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pures Appl. 11, 1261 (1900)Google Scholar
  3. 3.
    Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S., Zanetti, G.: Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 1 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    Siggia, E.D.: High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Lohse, D., Xia, K.-Q.: Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335 (2010)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Chilla, F., Schumacher, J.: New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58 (2012)CrossRefGoogle Scholar
  8. 8.
    Ching, E.S.C.: Statistics and Scaling in Turbulent Rayleigh–Bénard Convection. Springer, Singapore (2014)CrossRefMATHGoogle Scholar
  9. 9.
    Kadanoff, L.P.: Turbulent heat flow: structures and scaling. Phys. Today 54, 34 (2001)CrossRefGoogle Scholar
  10. 10.
    Heslot, F., Castaing, B., Libchaber, A.: Transition to turbulence in helium gas. Phys. Rev. A 36, 5870 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Malkus, M.V.R.: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196 (1954)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Grossmann, S., Lohse, D.: Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 3316 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Grossmann, S., Lohse, D.: Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Grossmann, S., Lohse, D.: Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 4462 (2004)ADSCrossRefMATHGoogle Scholar
  16. 16.
    Shishkina, O., Horn, S., Wagner, S., Ching, E.S.C.: Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114, 114302 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics, 2nd edn. Pergamon Press, Oxford (1987)Google Scholar
  18. 18.
    Shraiman, B.I., Siggia, E.D.: Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 3650 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Prandtl, L.: Uber Flüssigkeits bewegung bei sehr kleiner Reibung. In: Proceedings of the III International Mathematicians Congress, pp. 484–491. Teubner, Heidelberg (1904); also available in translation as: Motion of fluids with very little viscosity. NACA TM 452 (March 1928)Google Scholar
  20. 20.
    Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)MATHGoogle Scholar
  21. 21.
    Pohlhausen, E.: Der Wärmetausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z. Angew. Math. Mech. 1, 115–121 (1921)CrossRefMATHGoogle Scholar
  22. 22.
    Ching, E.S.C.: Heat flux and shear rate in turbulent convection. Phys. Rev. E 55, 1189 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Shishkina, O., Thess, A.: Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 663, 449 (2009)ADSCrossRefMATHGoogle Scholar
  24. 24.
    Stevens, R.J.A.M., Verzicco, R., Lohse, D.: Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495 (2010)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Shi, N., Emran, M.S., Schumacher, J.: Boundary layer structure in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 706, 5 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Scheel, J.D., Kim, E., White, K.R.: Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 711, 281 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Stevens, R.J.A.M., Zhou, Q., Grossmann, S., Verzicco, R., Xia, K.-Q., Lohse, D.: Thermal boundary layer profiles in turbulent Rayleigh–Bénard convection in a cylindrical sample. Phys. Rev. E 85, 027301 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Kaczorowski, M., Shishkina, O., Shishkin, A.,Wagner, C., Xia, K.-Q.: Development of a numerical procedure for direct simulations of turbulent convection in a closed rectangular cell. In: Kuerten, H. et al. (eds.) Direct and Large-Eddy Simulation VIII, p. 383. Springer, New York (2011)Google Scholar
  29. 29.
    Zhou, Q., Xia, K.-Q.: Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell. J. Fluid Mech. 721, 199 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zhou, Q., Xia, K.-Q.: Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 104301 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Shishkina, O., Stevens, R.J.A.M., Grossmann, S., Lohse, D.: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. N. J. Phys. 12, 075022 (2010)CrossRefGoogle Scholar
  32. 32.
    Wang, Y., He, X., Tong, P.: Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 082301(R) (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Emily S. C. Ching
    • 1
  • On-Yu Dung
    • 1
    • 2
  • Olga Shishkina
    • 3
  1. 1.Department of PhysicsThe Chinese University of Hong KongShatinHong Kong
  2. 2.Physics of Fluids Group, Faculty of Science and Technology, J. M. Burgers Centre for Fluid DynamicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.Max Planck Institute for Dynamics and Self-OrganizationGöettingenGermany

Personalised recommendations