Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 427–461 | Cite as

Disorder Operators and Their Descendants

Article

Abstract

I review the concept of a disorder operator, introduced originally by Kadanoff in the context of the two-dimensional Ising model. Disorder operators acquire an expectation value in the disordered phase of the classical spin system. This concept has had applications and implications to many areas of physics ranging from quantum spin chains to gauge theories to topological phases of matter. In this paper I describe the role that disorder operators play in our understanding of ordered, disordered and topological phases of matter. The role of disorder operators, and their generalizations, and their connection with dualities in different systems, as well as with majorana fermions and parafermions, is discussed in detail. Their role in recent fermion–boson and boson–boson dualities is briefly discussed.

Keywords

Disorder operators Critical phenomena Ising models Ising gauge theory Quantum spin chains Topological phases of matter Duality transformations 

References

  1. 1.
    Affleck, I.: Exact critical exponents for quantum spin chains, non-linear \(\sigma \)-models at \(\theta =\pi \) and the quantum Hall effect. Nucl. Phys. B 265, 409 (1986)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Affleck, I., Haldane, F.D.M.: Critical theory of quantum spin chains. Phys. Rev. B 36, 5291 (1987)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aharony, O., Gur-Ari, G., Yacoby, R.: Correlation functions of large \(N\) Chern–Simons-Matter theories and bosonization in three dimensions. JHEP J. High Energy Phys. 2012, 028 (2012)ADSMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Albertini, G., McCoy, B.M., Perk, J.H.: Level crossing transitions and the massless phases of the superintegrable chiral potts chain. Phys. Lett. A 139, 204 (1989)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Alcaraz, F.C., Köberle, R.: Duality and the phases of \(\mathbb{Z}_N\) spin systems. J. Phys. A: Math. Gen. 13, L153 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    Alexandradinata, A., Regnault, N., Fang, C., Gilbert, M.J., Bernevig, B.A.: Parafermionic phases with symmetry breaking and topological order. Phys. Rev. B 94, 125103 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Alicea, J., Fendley, P.: Topological phases with parafermions: theory and blueprints. Ann. Rev. Condens. Matter Phys. 7, 119 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Balian, R., Drouffe, J.M., Itzykson, C.: Gauge fields on a lattice. II. Gauge-invariant Ising model. Phys. Rev. D 11, 2098 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984)ADSMathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bethe, H.: Theory of metals. I. Eigenvalues and eigenfunctions of the linear atomic chain. Z. Phys. 71, 205 (1931)ADSCrossRefGoogle Scholar
  11. 11.
    Boyanovsky, D.: Field-theoretical renormalization and fixed-point structure of a generalized coulomb gas. J. Phys. A: Math. Gen. 22, 2601 (1989)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Burgess, C.P., Dolan, B.P.: Particle-vortex duality and the modular group: Applications to the quantum Hall effect and other two-dimensional systems. Phys. Rev. B 63, 155309 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Burgess, C.P., Quevedo, F.: Bosonization as duality. Nucl. Phys. B 421, 373 (1993)ADSMathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Callan, C.G., Harvey, J.A.: Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B 250, 427 (1985)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Casher, A., Foerster, D., Windey, P.: On the reformulation of the d = 3 Ising model in terms of random surfaces. Nucl. Phys. B 251, 29 (1985)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chan, A., Hughes, T.L., Ryu, S., Fradkin, E.: Effective field theories for topological insulators by functional bosonization. Phys. Rev. B 87, 085132 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Clarke, D.J., Alicea, J., Shtengel, K.: Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Clarke, D.J., Alicea, J., Shtengel, K.: Exotic circuit elements from zero-modes in hybrid superconductor-quantum-hall systems. Nat. Phys. 10, 877 (2014)CrossRefGoogle Scholar
  19. 19.
    Coleman, S.: Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11, 2088 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    Sarma, S.D., Freedman, M., Nayak, C., Simon, S.H., Stern, A.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)ADSMathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Dasguspta, C., Halperin, B.I.: Phase transition in a lattice model of superconductivity. Phys. Rev. Lett. 47, 1556 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    den Nijs, M., Rommelse, K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, Berlin (1997)MATHCrossRefGoogle Scholar
  24. 24.
    Dotsenko, V.S.: Duality transformations for discrete abelian models. Simple example of duality transformation for non-abelian model. Sov. Phys. JETP (Zh. Eksp. Teor. Fiz.) 48, 546 (1978). (Zh. Eksp. Teor. Fiz. 75, 1083 (1978))Google Scholar
  25. 25.
    Dotsenko, V.S.: Critical behaviour and associated conformal algebra of the \(Z_3\) Potts model. Nucl. Phys. B 235, 54 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    Dotsenko, V.S.: 3D Ising model as a free fermion string theory. Nucl. Phys. B 285, 45 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    Elitzur, S.: Impossibility of spontaneous breaking of local symmetries. Phys. Rev. D 12, 3978 (1975)ADSCrossRefGoogle Scholar
  28. 28.
    Elitzur, S., Pearson, R.B., Shigemitsu, J.: Phase structure of discrete abelian spin and gauge systems. Phys. Rev. D 19, 3698 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    Fateev, V.A., Zamolodchikov, A.B.: Self-dual solutions of the star-triangle relations in \(\mathbb{Z}_n\)-models. Phys. Lett. A 92, 37–39 (1982)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Fendley, P.: Parafermionic edge zero modes in \(z_n\)-invariant spin chains. J. Stat. Mech. Theory Exp. 2012, 11020 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Fisher, M.E., Ferdinand, A.E.: Interfacial, boundary, and size effects at critical points. Phys. Rev. Lett. 19, 169 (1967)ADSCrossRefGoogle Scholar
  32. 32.
    Fisher, M.P.A.: Quantum phase transitions in diosrdered two-dimensional superconductors. Phys. Rev. Lett. 65, 923 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Fradkin, E.: Field Theories of Condensed Matter Systems, 2nd edn. Cambridge University Press, Cambridge (2013)MATHCrossRefGoogle Scholar
  34. 34.
    Fradkin, E., Huberman, B.A., Shenker, S.H.: Gauge symmetries in random magnetic systems. Phys. Rev. B 18, 4789 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    Fradkin, E., Kadanoff, L.P.: Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B 170, 1 (1980)ADSCrossRefGoogle Scholar
  36. 36.
    Fradkin, E., Kivelson, S.: Modular invariance, self-duality and the phase transition between quantum Hall plateaus. Nucl. Phys. B 474, 543 (1996)ADSMathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Fradkin, E., Schaposnik, F.A.: The fermion–boson mapping in three dimensional quantum field theory. Phys. Lett. B 338, 253 (1994)ADSMathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    Fradkin, E., Srednicki, M., Susskind, L.: Fermion representation for the \(z_2\) lattice gauge theory in 2+1 dimensions. Phys. Rev. D 21, 2885 (1980)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Fradkin, E., Susskind, L.: Order and disorder in gauge systems and magnets. Phys. Rev. D 17, 2637 (1978)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Freedman, M., Nayak, C., Shtengel, K., Walker, K.: A class of \({P},{T}\)-invariant topological phases of interacting electrons. Ann. Phys. 310, 428 (2004)ADSMathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Friedan, D.H., Qiu, Z., Shenker, S.H.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575 (1984)ADSMathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Fröhlich, J., Zee, A.: Large-scale physics of the quantum Hall Fluid. Nucl. Phys. B 364, 517 (1991)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Fu, L., Kane, C.L.: Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    von Gehlen, G., Rittenberg, V.: \(\mathbb{Z}_N\)-symmetric quantum chains with an infinite set of conserved charges and \(\mathbb{Z}_N\) zero modes. Nucl. Phys. B 257, 351 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    Girvin, S.M., Arovas, D.P.: Hidden topological order in integer quantum spin chains. Phys. Scr. 1989(T27), 156 (1989)CrossRefGoogle Scholar
  47. 47.
    Hagiwara, M., Katsumata, K., Affleck, I., Halperin, B.I., Renard, J.P.: Observation of \({S} =1/2\) degrees of freedom in an \({S} =1\) linear-chain Heisenberg antiferromagnet. Phys. Rev. Lett. 65, 3181 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    Haldane, F.D.M.: Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the \(O(3)\) nonlinear sigma model. Phys. Lett. A 93, 464 (1983)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Haldane, F.D.M.: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Halperin, B.I.: Statistics of quasiparticles and the hierarchy of fractional quantized hall states. Phys. Rev. Lett. 52, 1583 (1984)ADSCrossRefGoogle Scholar
  51. 51.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Hastings, M.B., Wen, X.G.: Quasiadiabatic continuation of quantum states: The stability of topological ground state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    Howes, S., Kadanoff, L.P., den Nijs, M.: Quantum model for commensurate-incommensurate transitions. Nucl. Phys. B 215, 169 (1983)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Huse, D.A., Szpilka, A.M., Fisher, M.E.: Melting and wetting transitions in the three-state chiral clock model. Phys. A 121, 363 (1983)CrossRefGoogle Scholar
  55. 55.
    Itzykson, C.: Ising fermions (II). Three dimensions. Nucl. Phys. B 210, 477 (1982)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Ivanov, D.A.: Non-abelian statistics of half-quantum vortices in \(p\)-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Jain, S., Minwalla, S., Yokoyama, S.: Chern–Simons duality with fundamental boson and fermion. JHEP J. High Energy Phys. 2013, 037 (2013)CrossRefGoogle Scholar
  58. 58.
    José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217 (1977)ADSCrossRefGoogle Scholar
  59. 59.
    Kadanoff, L.P.: Operator algebra and the determination of critical indices. Phys. Rev. Lett. 23, 1430 (1969)ADSCrossRefGoogle Scholar
  60. 60.
    Kadanoff, L.P.: Lattice Coulomb gas representations of two-dimensional problems. J. Phys. A Math. Gen. 11, 1399 (1978)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Kadanoff, L.P.: Multicritical behavior at the Kosterlitz–Thouless critical point. Ann. Phys. 120, 39 (1979)ADSCrossRefGoogle Scholar
  62. 62.
    Kadanoff, L.P., Ceva, H.: Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 3, 3918 (1971)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Karch, A., Tong, D.: Particle-vortex duality from 3D bosonization. Phys. Rev. X 6, 031043 (2016)Google Scholar
  64. 64.
    Kaufman, B.: Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev. 76, 1232 (1949)ADSMATHCrossRefGoogle Scholar
  65. 65.
    Kennedy, T.: Exact diagonalisations of open spin-1 chains. J. Phys. Condens. Matter 2(26), 5737 (1990)ADSCrossRefGoogle Scholar
  66. 66.
    Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Phys. Uspekhi 44, 131 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)ADSMathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Kivelson, S., Lee, D.H., Zhang, S.C.: Global phase diagram in the quantum Hall effect. Phys. Rev. B 46, 2223 (1992)ADSCrossRefGoogle Scholar
  69. 69.
    Kogut, J.B.: An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659 (1979)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Kosterlitz, J.M.: The \(d\)-dimensional Coulomb gas and the roughening transition. J. Phys. C Solid State Phys. 10, 3753 (1977)ADSCrossRefGoogle Scholar
  71. 71.
    Kosterlitz, J.M., Thouless, D.J.: Order, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973)ADSCrossRefGoogle Scholar
  72. 72.
    Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252 (1941)ADSMathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1. Course of Theoretical Physics, 3rd edn. Pergamon Press, Oxford (1980)Google Scholar
  74. 74.
    Laughlin, R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)ADSCrossRefGoogle Scholar
  75. 75.
    Le Guillou, J.C., Moreno, E., Schaposnik, F.A., Núñez, C.: On three dimensional bosonization. Phys. Lett. B 409, 257 (1997)ADSMathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Lecheminant, P., Gogolin, A.O., Nersesyan, A.A.: Criticality in self-dual Sine-Gordon models. Nucl. Phys. B 639, 502 (2002)ADSMathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Lee, D.H., Fisher, M.: Anyon superconductivity and the fractional quantum Hall effect. Phys. Rev. Lett. 63, 903 (1989)ADSCrossRefGoogle Scholar
  78. 78.
    Lee, D.H., Kivelson, S., Zhang, S.C.: Theory of the quantum-Hall liquid to insulator transition. Phys. Rev. Lett. 67, 3302 (1991)ADSCrossRefGoogle Scholar
  79. 79.
    Lieb, E., Mattis, D.C.: Exact Solution of a many fermion System and its associated boson field. J. Math. Phys. 6, 304 (1965)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    Lieb, E., Schultz, T., Mattis, D.C.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961)ADSMathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Lindner, N.H., Berg, E., Refael, G., Stern, A.: Fractionalizing majorana fermions: Non-abelian statistics on the edges of abelian quantum hall states. Phys. Rev. X 2, 041002 (2012)Google Scholar
  82. 82.
    López, A., Fradkin, E.: Fractional quantum Hall effect and Chern–Simons gauge theories. Phys. Rev. B 44, 5246 (1991)ADSCrossRefGoogle Scholar
  83. 83.
    Luther, A., Emery, V.J.: Backward scattering in the one-dimensional electron gas. Phys. Rev. Lett. 33, 589 (1974)ADSCrossRefGoogle Scholar
  84. 84.
    Lütken, C.A., Ross, G.G.: Duality in the quantum Hall system. Phys. Rev. B 45, 11837 (1992)ADSCrossRefGoogle Scholar
  85. 85.
    Mandelstam, S.: Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D 11, 3026 (1975)ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    Metlitski, M., Vishwanath, A.: Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality in three-dimensional topological insulators. Phys. Rev. B 93, 245151 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    Moessner, R., Sondhi, S.L.: Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881 (2001)ADSCrossRefGoogle Scholar
  88. 88.
    Moessner, R., Sondhi, S.L., Fradkin, E.: Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B 65, 024504 (2001)ADSCrossRefGoogle Scholar
  89. 89.
    Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P.: Parafermionic conformal field theory on the lattice. J. Phys. A Math. Theor. 47, 452001 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-abelian quantum hall heterostructure. Phys. Rev. X 4, 011036 (2014)Google Scholar
  91. 91.
    Nienhuis, B.: Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys. 34, 731 (1984)ADSMathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)ADSMathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Orland, P.: World-sheet action for the three-dimensional ising model. Phys. Rev. Lett. 59, 2393 (1987)ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    Oshikawa, M.: Hidden \(z_2 \times z_2\) symmetry in quantum spin chains with arbitrary integer spin. J. Phys. Condens. Matter 4, 7469 (1992)ADSCrossRefGoogle Scholar
  95. 95.
    Östlund, S.: Incommensurate and commensurate phases in asymmetric clock models. Phys. Rev. B 24, 398 (1981)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Peskin, M.E.: Mandelstam-’t Hooft duality in Abelian lattice models. Ann. Phys. (N. Y.) 113, 122 (1978)ADSCrossRefGoogle Scholar
  97. 97.
    Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79 (1970)ADSCrossRefGoogle Scholar
  98. 98.
    Pollmann, F., Turner, A.M., Berg, E., Oshikawa, M.: Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Polyakov, A.M.: Properties of long and short range correlations in the critical region. Sov. Phys. JETP 30, 151 (1970). (Zh. Eksp. Teor. Fiz. 57, 271 (1969))Google Scholar
  100. 100.
    Polyakov, A.M.: Compact gauge fields and the infrared catastrophe. Physi. Lett. B 59, 82 (1975)ADSCrossRefGoogle Scholar
  101. 101.
    Polyakov, A.M.: Interaction of goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett. B 59, 79 (1975)ADSCrossRefGoogle Scholar
  102. 102.
    Polyakov, A.M.: Quantum geoemetry of fermionic strings. Phys. Lett. B 103, 211 (1981)ADSMathSciNetCrossRefGoogle Scholar
  103. 103.
    Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1058 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    Read, N., Green, D.: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000)ADSCrossRefGoogle Scholar
  105. 105.
    Read, N., Sachdev, S.: Large-\(N\) expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773 (1991)ADSCrossRefGoogle Scholar
  106. 106.
    Rokhsar, D., Kivelson, S.A.: Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376 (1988)ADSCrossRefGoogle Scholar
  107. 107.
    Savary, L., Balents, L.: Quantum spin liquids: a review. Rep. Progr. Phys. 80, 016502 (2017)ADSCrossRefGoogle Scholar
  108. 108.
    Savit, R.: Duality in field theory and in statistical systems. Rev. Mod. Phys. 52, 453 (1980)ADSMathSciNetCrossRefGoogle Scholar
  109. 109.
    Schrieffer, J.R.: Theory of Superconductivity. Frontiers in Physics. Addison-Wesley, Redwood City (1964)MATHGoogle Scholar
  110. 110.
    Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856 (1964)ADSMathSciNetCrossRefGoogle Scholar
  111. 111.
    Seiberg, N., Senthil, T., Wang, C., Witten, E.: A duality web in \(2+1\) dimensions and condensed matter physics. Ann. Phys. (N. Y.) 374, 395 (2016)ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(N=2\) supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19 (1994)ADSMathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Senthil, T.: Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015)ADSCrossRefGoogle Scholar
  114. 114.
    Shimshoni, E., Sondhi, S.L., Shahar, D.: Duality near quantum Hall transitions. Phys. Rev. B 55, 13730 (1997)ADSCrossRefGoogle Scholar
  115. 115.
    t Hooft, G.: A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B 153, 141 (1979)ADSMathSciNetCrossRefGoogle Scholar
  116. 116.
    Tasaki, H.: Quantum liquid in antiferromagnetic chains: a stochastic geometric approach to the haldane gap. Phys. Rev. Lett. 66, 798 (1991)ADSMathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Thomas, P.R., Stone, M.: Nature of the phase transition in a non-linear \(O(2)_3\) model. Nucl. Phys. B 144, 513 (1978)ADSCrossRefGoogle Scholar
  118. 118.
    Toulouse, G.: Theory of the frustration effect in spin glasses I. Commun. Phys. 2, 115 (1977)Google Scholar
  119. 119.
    Ukawa, A., Windey, P., Guth, A.H.: Dual variables for lattice gauge theories and the phase structure of \(z(n)\) systems. Phys. Rev. D 21, 1013 (1980)ADSCrossRefGoogle Scholar
  120. 120.
    Vaezi, A.: Superconducting analogue of the parafermion fractional quantum Hall states. Phys. Rev. X 4, 031009 (2014)Google Scholar
  121. 121.
    Villain, J.: Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Phys. 36, 581 (1975)CrossRefGoogle Scholar
  122. 122.
    Wegner, F.J.: Duality in generalized Ising models and phase transitions without local order parameters. J. Math. Phys. 12, 2259 (1971)ADSMathSciNetCrossRefGoogle Scholar
  123. 123.
    Wen, X.G.: Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405 (1995)ADSCrossRefGoogle Scholar
  124. 124.
    Wen, X.G., Niu, Q.: Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B 41, 9377 (1990)ADSCrossRefGoogle Scholar
  125. 125.
    Wen, X.G., Zee, A.: Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Phys. Rev. B 46, 2290 (1992)ADSCrossRefGoogle Scholar
  126. 126.
    Wiegmann, P.B.: One-dimensional Fermi system and plane \(XY\) model. J. Phys. C Solid State Phys. 11, 1583 (1978)ADSCrossRefGoogle Scholar
  127. 127.
    Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144 (1982)ADSCrossRefGoogle Scholar
  128. 128.
    Wilson, K.G.: Non-lagrangian models of current algebra. Phys. Rev. 179, 1499 (1969)ADSMathSciNetCrossRefGoogle Scholar
  129. 129.
    Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10, 2445 (1974)ADSCrossRefGoogle Scholar
  130. 130.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)ADSMathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Witten, E.: On \(S\)-duality in Abelian Gauge Theory. Sel. Math. (N. Ser.) 1, 383 (1995)MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Witten, E.: \(SL(2,{\mathbb{Z}})\) action on three-dimensional conformal field theories with Abelian symmetry (2003)Google Scholar
  133. 133.
    Yang, C.N., Yang, C.P.: One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground state energy per lattice site for an infiinite system. Phys. Rev. 150, 327 (1966)ADSCrossRefGoogle Scholar
  134. 134.
    Zamolodchikov, A.B., Fateev, V.: Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in \(\mathbb{Z}_n\)-symmetric statistical systems. Sov. Phys. JETP 62, 215 (1985). (Zh. Eksp. Teor. Fiz. 89, 380 (1985))Google Scholar
  135. 135.
    Zamolodchikov, A.B., Fateev, V.A.: Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical Potts \(\mathbb{Z}_3\) model. Theor. Math. Phys. 71, 451 (1987). (Teor. Mat. Fiz. 71, 163 (1987))Google Scholar
  136. 136.
    Zhang, S.C., Hansson, T.H., Kivelson, S.: Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82 (1989)ADSCrossRefGoogle Scholar
  137. 137.
    Zuber, J.B., Itzykson, C.: Quantum field theory and the two-dimensional ising model. Phys. Rev. D 15, 2875 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics and Institute for Condensed Matter TheoryUniversity of IllinoisUrbanaUSA

Personalised recommendations