Journal of Statistical Physics

, Volume 166, Issue 6, pp 1345–1364 | Cite as

Mean Field Evolution of Fermions with Coulomb Interaction

  • Marcello PortaEmail author
  • Simone Rademacher
  • Chiara Saffirio
  • Benjamin Schlein


We study the many body Schrödinger evolution of weakly coupled fermions interacting through a Coulomb potential. We are interested in a joint mean field and semiclassical scaling, that emerges naturally for initially confined particles. For initial data describing approximate Slater determinants, we prove convergence of the many-body evolution towards Hartree–Fock dynamics. Our result holds under a condition on the solution of the Hartree–Fock equation, that we can only show in a very special situation (translation invariant data, whose Hartree–Fock evolution is trivial), but that we expect to hold more generally.


Many-body quantum dynamics Mean field scaling Semiclassical scaling Hartree–Fock dynamics Coulomb interaction 



We acknowledge the support of the NCCR SwissMAP. Furthermore, M.P. has been supported by the Swiss National Science Foundation through the grant “Mathematical aspects of many-body quantum systems”. C.S. was supported by the Forschungskredit UZHFK-15-108. B.S. is happy to acknowledge support from the Swiss National Science Foundation through the grant “Effective equations from quantum dynamics”.


  1. 1.
    Amour, L., Khodja, M., Nourrigat, J.: The semiclassical limit of the time dependent Hartree-Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Athanassoulis, A., Paul, T., Pezzotti, F., Pulvirenti, M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bach, V.: Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147(3), 527–548 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean-field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benedikter, N., Jaksic, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math (2015). doi: 10.1002/cpa.21598
  7. 7.
    Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221, 273–334 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55, 021901 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Elgart, A., Erdős, L., Schlein, B., Yau, H.T.: Nonlinear Hartree equation as the mean-field limit of weakly coupled fermions. J. Math. Pures Appl. 83(10), 1241–1273 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fefferman, ChL, de la Llave, R.: Relativistic stability of matter—I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Graf, G.M., Solovej, J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6, 977–997 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Markowich, P.A., Mauser, N.J.: The classical limit of a self-consistent quantum Vlasov equation. Math. Models Methods Appl. Sci. 3(1), 109–124 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Petrat, S., Pickl, P.: A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19, 3 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Solovej, J.P.: Many Body Quantum Mechanics. Lecture Notes. Summer (2007)Google Scholar
  21. 21.
    Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Marcello Porta
    • 1
    Email author
  • Simone Rademacher
    • 1
  • Chiara Saffirio
    • 1
  • Benjamin Schlein
    • 1
  1. 1.Institute of MathematicsUniversity of ZurichZurichSwitzerland

Personalised recommendations