Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 575–594 | Cite as

Turbulence as a Problem in Non-equilibrium Statistical Mechanics

  • Nigel GoldenfeldEmail author
  • Hong-Yan Shih


The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.


Turbulence Phase transitions Directed percolation Extreme value statistics Non-equilibrium statistical mechanics Fluctuation-dissipation theorem Predator-prey ecosystems 



NG wishes to express his gratitude to Leo P. Kadanoff for his scientific inspiration, support, collaboration and friendship over many decades. NG also wishes to thank P. Chakraborty, G. Gioia, W. Goldburg, T. Tran, H. Kellay and N. Guttenberg for collaboration on the topics in Sect. 2. We thank T.-L. Hsieh and M. Sipos for collaboration on the topics in Sect. 3. We acknowledge helpful discussions with L.P. Kadanoff, B. Hof, J. Wesfreid, P. Manneville, D. Barkley and Y. Pomeau. We thank N. Guttenberg for technical assistance with Fig. 1. This work was supported in part by the National Science Foundation through grant NSF-DMR-1044901.


  1. 1.
    Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333(6039), 192–196 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Bardóczi, L., Bencze, A., Berta, M., Schmitz, L.: Experimental confirmation of self-regulating turbulence paradigm in two-dimensional spectral condensation. Phys. Rev. E 90(6), 063–103 (2014)CrossRefGoogle Scholar
  3. 3.
    Barenblatt, G., Zel’Dovich, Y.B.: Self-similar solutions as intermediate asymptotics. Annu. Rev. Fluid Mech. 4(1), 285–312 (1972)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Barenblatt, G.I.: Scaling, self-similarity, and intermediate asymptotics. Scaling, Self-similarity, and Intermediate Asymptotics, by Grigory Isaakovich Barenblatt. Cambridge University Press, Cambridge, p. 408, ISBN 0521435226 (1996)Google Scholar
  5. 5.
    Barkley, D.: Simplifying the complexity of pipe flow. Phys. Rev. E 84(1), 016309 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1 (2016). doi: 10.1017/jfm.2016.465 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bazant, M.Z.: Largest cluster in subcritical percolation. Phys. Rev. E 62(2), 1660–1669 (2000). doi: 10.1103/PhysRevE.62.1660 ADSCrossRefGoogle Scholar
  8. 8.
    Biancalani, T., Fanelli, D., Di Patti, F.: Stochastic Turing patterns in the Brusselator model. Phys. Rev. E 81(4), 046215 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Blasius, H.: Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschg. Arb. Ing.-Wes 134 (1913)Google Scholar
  10. 10.
    Butler, T., Goldenfeld, N.: Robust ecological pattern formation induced by demographic noise. Phys. Rev. E 80(3), 030902 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Cao, T.Y., Schweber, S.S.: The conceptual foundations and the philosophical aspects of renormalization theory. Synthese 97(1), 33–108 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cardy, J., Falkovich, G., Gawedzki, K.: Non-equilibrium Statistical Mechanics and Turbulence. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  13. 13.
    Cardy, J.L., Sugar, R.L.: Directed percolation and Reggeon field theory. J. Phys. A 13(12), L423–L427 (1980)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chate, H., Manneville, P.: Transition to turbulence via spatiotemporal intermittency. Phys. Rev. Lett. 58, 112–115 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Conway, G.D., Angioni, C., Ryter, F., Sauter, P., Vicente, J.: Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition. Phys. Rev. Lett. 106, 065001 (2011). doi: 10.1103/PhysRevLett.106.065001 ADSCrossRefGoogle Scholar
  16. 16.
    Crutchfield, J., Kaneko, K.: Are attractors relevant to turbulence? Phys. Rev. Lett. 60, 2715–2718 (1988)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Cvitanović, P.: Recurrent flows: the clockwork behind turbulence. J. Fluid Mech. 726, 1–4 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Diamond, P.H., Liang, Y.M., Carreras, B.A., Terry, P.W.: Self-regulating shear flow turbulence: a paradigm for the L-H transition. Phys. Rev. Lett. 72, 2565–2568 (1994). doi: 10.1103/PhysRevLett.72.2565 ADSCrossRefGoogle Scholar
  19. 19.
    Edwards, S.: The statistical dynamics of homogeneous turbulence. J. Fluid Mech. 18(02), 239–273 (1964)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Estrada, T., Happel, T., Hidalgo, C., Ascasbar, E., Blanco, E.: Experimental observation of coupling between turbulence and sheared flows during L-H transitions in a toroidal plasma. EPL 92(3), 35001 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Estrada, T., Hidalgo, C., Happel, T., Diamond, P.H.: Spatiotemporal structure of the interaction between turbulence and flows at the L-H transition in a toroidal plasma. Phys. Rev. Lett. 107, 245004 (2011). doi: 10.1103/PhysRevLett.107.245004 ADSCrossRefGoogle Scholar
  22. 22.
    Eyink, G., Goldenfeld, N.: Analogies between scaling in turbulence, field theory and critical phenomena. Phys. Rev. E 50, 4679–4683 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Falkovich, G.: Interaction between mean flow and turbulence in two dimensions. Proc. R. Soc. A 472, 20160287 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fisher, M.E.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Gioia, G., Chakraborty, P.: Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 96, 044502 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Gioia, G., Guttenberg, N., Goldenfeld, N., Chakraborty, P.: Spectral theory of the turbulent mean-velocity profile. Phys. Rev. Lett. 105(18), 184501 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Goldenfeld, N.: Lectures On Phase Transitions and the Renormalization Group. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  30. 30.
    Goldenfeld, N.: Roughness-induced critical phenomena in a turbulent flow. Phys. Rev. Lett. 96, 044503 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Goldenfeld, N., Guttenberg, N., Gioia, G.: Extreme fluctuations and the finite lifetime of the turbulent state. Phys. Rev. E 81(3), 035304 (2010). doi: 10.1103/PhysRevE.81.035304 ADSCrossRefGoogle Scholar
  32. 32.
    Goluskin, D., Johnston, H., Flierl, G.R., Spiegel, E.A.: Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360–385 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Grassberger, P.: On phase transitions in Schlögl’s second model. Z. für Physik B Condens. Matter. 47(4), 365–374 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    Gumbel, E.: Les valeurs extrêmes des distributions statistiques. Ann. de l’institut Henri Poincaré 5(2), 115–158 (1935)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Gumbel, E.: Statistics of Extremes. Columbia University Press, New York (1958)zbMATHGoogle Scholar
  36. 36.
    Guttenberg, N., Goldenfeld, N.: Friction factor of two-dimensional rough-boundary turbulent soap film flows. Phys. Rev. E 79(6), 65306 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Harada, T., Sasa, S.I.: Equality connecting energy dissipation with a violation of the fluctuation-response relation. Phys. Rev. Lett. 95(13) (2005)Google Scholar
  38. 38.
    von Hardenberg, J., Goluskin, D., Provenzale, A., Spiegel, E.: Generation of large-scale winds in horizontally anisotropic convection. Phys. Rev. Lett. 115(13), 134501 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49(7), 815–958 (2000). doi: 10.1080/00018730050198152 ADSCrossRefGoogle Scholar
  40. 40.
    Hof, B., de Lozar, A., Kuik, D.J., Westerweel, J.: Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101(21), 214501 (2008). doi: 10.1103/PhysRevLett.101.214501 ADSCrossRefGoogle Scholar
  41. 41.
    Hof, B., Westerweel, J., Schneider, T., Eckhardt, B.: Finite lifetime of turbulence in shear flows. Nature 443, 59–62 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Itoh, K., Itoh, S.I., Diamond, P.H., Hahm, T.S., Fujisawa, A., Tynan, G.R., Yagi, M., Nagashima, Y.: Physics of zonal flows. Phys. Plasm. 13(5), 055502 (2006). doi: 10.1063/1.2178779 ADSCrossRefGoogle Scholar
  43. 43.
    Janssen, H.: On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Z. für Physik B Condens. Matter. 42(2), 151–154 (1981). doi: 10.1007/BF01319549 ADSCrossRefGoogle Scholar
  44. 44.
    Kadanoff, L.P.: Scaling laws for Ising models near tc. Physics 2, 263–272 (1966)Google Scholar
  45. 45.
    Kadanoff, L.P.: More is the same; phase transitions and mean field theories. J. Stat. Phys. 137(5–6), 777–797 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kadanoff, L.P.: Relating theories via renormalization. Stud. Hist. Philos. Sci. Part B 44(1), 22–39 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Kampen, Nv: A power series expansion of the master equation. Can. J. Phys. 39(4), 551–567 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kellay, H., Tran, T., Goldburg, W., Goldenfeld, N., Gioia, G., Chakraborty, P.: Testing a missing spectral link in turbulence. Phys. Rev. Lett. 109(25), 254502 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    Kim, E.J., Diamond, P.H.: Zonal flows and transient dynamics of the L-H transition. Phys. Rev. Lett. 90, 185006 (2003). doi: 10.1103/PhysRevLett.90.185006 ADSCrossRefGoogle Scholar
  50. 50.
    Kraichnan, R.H.: The structure of isotropic turbulence at very high reynolds numbers. J. Fluid Mech. 5(04), 497–543 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Landau, L.D.: On the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 339–349 (1944)MathSciNetGoogle Scholar
  52. 52.
    Lemoult, G., Shi, L., Avila, K., Jalikop, S.V., Avila, M., Hof, B.: Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12, 254–258 (2016)CrossRefGoogle Scholar
  53. 53.
    Lotka, A.J.: Contribution to the theory of periodic reactions. J. Phys. Chem. 14(3), 271–274 (1910)CrossRefGoogle Scholar
  54. 54.
    Manneville, P.: On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular. Eur. J. Mech. -B/Fluids 49, 345–362 (2015)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    McComb, W.: Theory of turbulence. Rep. Prog. Phys. 58, 1117–1205 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    McKane, A.J., Newman, T.J.: Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94(21), 218102 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Mehrafarin, M., Pourtolami, N.: Intermittency and rough-pipe turbulence. Phys. Rev. E 77, 055304 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Mobilia, M., Georgiev, I.T., Täuber, U.C.: Phase transitions and spatio-temporal fluctuations in stochastic lattice Lotka-Volterra models. J. Stat. Phys. 128(1–2), 447–483 (2007). doi: 10.1007/s10955-006-9146-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Nikuradze, J.: Stromungsgesetze in rauhen Rohren. VDI Forschungsheft 361(1) (1933). [English translation available as National Advisory Committee for Aeronautics, Tech. Memo. 1292] (1950)
  60. 60.
    Parker, J.B., Krommes, J.A.: Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys. 16(3), 035006 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    Polyakov, A.: Kenneth Wilson in Moscow. (2015) arXiv:1502.03502
  62. 62.
    Pomeau, Y.: Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica 23D, 3–11 (1986)ADSGoogle Scholar
  63. 63.
    Pomeau, Y.: The long and winding road. Nat. Phys. 12, 198–199 (2016)CrossRefGoogle Scholar
  64. 64.
    Prost, J., Joanny, J.F., Parrondo, J.: Generalized fluctuation-dissipation theorem for steady-state systems. Phys. Rev. Lett. 103(9), 90601 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    Renshaw, E.: Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  66. 66.
    Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channel. Philos. Trans. R. Soc. Lond. 174, 935 (1883)CrossRefzbMATHGoogle Scholar
  67. 67.
    Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. A 174, 935–982 (1883)CrossRefzbMATHGoogle Scholar
  68. 68.
    Ruelle, D.: Non-equilibrium statistical mechanics of turbulence. J. Stat. Phys. 157, 205–218 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20(3), 167–192 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Sano, M., Tamai, K.: A universal transition to turbulence in channel flow. Nat. Phys. 12, 249–253 (2016)CrossRefGoogle Scholar
  71. 71.
    Schmitz, L., Zeng, L., Rhodes, T.L., Hillesheim, J.C., Doyle, E.J., Groebner, R.J., Peebles, W.A., Burrell, K.H., Wang, G.: Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement. Phys. Rev. Lett. 108, 155002 (2012). doi: 10.1103/PhysRevLett.108.155002 ADSCrossRefGoogle Scholar
  72. 72.
    Schneider, T., Eckhardt, B.: Lifetime statistics in transitional pipe flow. Phys. Rev. E 78(4), 46310 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 6001 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    Shih, H.Y., Goldenfeld, N.: Extreme value statistics and critical exponents at the laminar-turbulence transition in pipes (2016). UnpublishedGoogle Scholar
  75. 75.
    Shih, H.Y., Hsieh, T.L., Goldenfeld, N.: Ecological collapse and the emergence of travelling waves at the onset of shear turbulence. Nat. Phys. 12, 245–248 (2016)CrossRefGoogle Scholar
  76. 76.
    Sipos, M., Goldenfeld, N.: Directed percolation describes lifetime and growth of turbulent puffs and slugs. Phys. Rev. E 84(3), 035304 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    Sivashinsky, G., Yakhot, V.: Negative viscosity effect in large-scale flows. Phys. Fluids (1958–1988) 28(4), 1040–1042 (1985)Google Scholar
  78. 78.
    Song, B., Hof, B.: Deterministic and stochastic aspects of the transition to turbulence. J. Stat. Mech. 2014(2), P02001 (2014)CrossRefGoogle Scholar
  79. 79.
    Sreenivasan, K.R., Eyink, G.L.: Sam Edwards and the turbulence theory. In: Goldbart, P., Goldenfeld, N., Sherrington, D. (eds.) Stealing the Gold: A Celebration of the Pioneering Physics of Sam Edwards, pp. 66–85. Oxford University Press, Oxford (2005)Google Scholar
  80. 80.
    Strickler, A.: Beitrage zur frage der geschwindigkeitsformel und der rauhigkeitszahlen fur strome, kanale und geschlossene leitungen (1923). Mitteilungen des Eidgenössischen Amtes für Wasserwirtschaft 16, Bern, Switzerland.  Translated as “ Contributions to the question of a velocity formula and roughness data for streams, channels and closed pipelines.” by T. Roesgan and W. R. Brownie, Translation T-10, W. M. Keck lab of hydraulics and water resources, Calif. Inst. Tech., Pasadena, CA. January (1981)Google Scholar
  81. 81.
    Täuber, U.C.: Population oscillations in spatial stochastic Lotka-Volterra models: a field-theoretic perturbational analysis. J. Phys. A 45(40), 405002 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Tél, T., Lai, Y.: Chaotic transients in spatially extended systems. Phys. Rep. 460(6), 245–275 (2008)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    Tran, T., Chakraborty, P., Guttenberg, N., Prescott, A., Kellay, H., Goldburg, W., Goldenfeld, N., Gioia, G.: Macroscopic effects of the spectral structure in turbulent flows. Nat. Phys. 4, 438–441 (2010)CrossRefGoogle Scholar
  84. 84.
    Van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  85. 85.
    Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari (1927)Google Scholar
  86. 86.
    Widom, B.: Equation of state in the neighbourhood of the critical point. J. Chem. Phys. 43, 3898–3905 (1965)ADSCrossRefGoogle Scholar
  87. 87.
    Widom, B.: Laboring in the vineyard of physical chemistry. Annu. Rev. Phys. Chem. 62, 1–18 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    Willis, A.P., Kerswell, R.R.: Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarisation and localised ‘edge’ states. J. Fluid Mech. 619, 213–233 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Wilson, K.G.: Renormalization group and critical phenomena. I. renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971)ADSCrossRefzbMATHGoogle Scholar
  90. 90.
    Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    Wyld, H.W.: Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Xu, G.S., Wan, B.N., Wang, H.Q., Guo, H.Y., Zhao, H.L., Liu, A.D., Naulin, V., Diamond, P.H., Tynan, G.R., Xu, M., Chen, R., Jiang, M., Liu, P., Yan, N., Zhang, W., Wang, L., Liu, S.C., Ding, S.Y.: First evidence of the role of zonal flows for the L-H transition at marginal input power in the east tokamak. Phys. Rev. Lett. 107, 125001 (2011). doi: 10.1103/PhysRevLett.107.125001 ADSCrossRefGoogle Scholar
  93. 93.
    Yakhot, V., Orszag, S.A.: Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1(1), 3–51 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Zamalloa, Z.C., Ng, H.C.H., Chakraborty, P., Gioia, G.: Spectral analogues of the law of the wall, the defect law and the log law. J. Fluid Mech. 757, 498–513 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Loomis Laboratory of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations