Abstract
This paper studies a mathematical formalism of nonequilibrium thermodynamics for chemical reaction models with N species, M reactions, and general rate law. We establish a mathematical basis for J. W. Gibbs’ macroscopic chemical thermodynamics under G. N. Lewis’ kinetic law of entire equilibrium (detailed balance in nonlinear chemical kinetics). In doing so, the equilibrium thermodynamics is then naturally generalized to nonequilibrium settings without detailed balance. The kinetic models are represented by a Markovian jumping process. A generalized macroscopic chemical free energy function and its associated balance equation with nonnegative source and sink are the major discoveries. The proof is based on the large deviation principle of this type of Markov processes. A general fluctuation dissipation theorem for stochastic reaction kinetics is also proved. The mathematical theory illustrates how a novel macroscopic dynamic law can emerges from the mesoscopic kinetics in a multi-scale system.
This is a preview of subscription content, access via your institution.
References
Anderson, D.F., Kurtz, T.G.: Stochastic Analysis of Biochemical Systems. Springer, New York (2015)
Anderson, D.F., Craciun, G., Gopalkrishnan, M., Wiuf, C.: Lyapunov functions, stationary distributions, and non-equilibrium potential for reaction networks. Bullet. Math. Biol. 77, 1744–1767 (2015)
Anderson, P.W.: More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972)
Arnold, V.I.: Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics), 2nd edn. Springer, New York (1997)
Beard, D.A., Qian, H.: Relationship between thermodynamic driving force and one-way fluxes in reversible chemical reactions. PLoS ONE 2, e144 (2007)
Beard, D.A., Qian, H.: Chemical Biophysics: Quantitative Analysis of Cellular Systems. Cambridge University Press, Cambridge, UK (2008)
Bennett, C.H.: Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Phil. Mod. Phys. 34, 501–510 (2003)
Chow, S.-N., Huang, W., Li, Y., Zhou, H.: Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203, 969–1008 (2012)
Delbrück, M.: Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124 (1940)
Doob, J.L.: Markoff chains—denumerable case. Trans. Am. Math. Soc. 58, 455–473 (1945)
Esposito, M., van den Broeck, C.: Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)
Esposito, M., Harbola, U., Mukamel, S.: Entropy fluctuation theorems in driven open systems: application to electron counting statistics. Phys. Rev. E. 76, 031132 (2007)
Fathi, A.: Weak KAM theorem in Lagrangian dynamics, 7th edn. http://www.math.ens.fr/~baladi/fathidea (2005)
Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)
Feinberg, M.: Some recent results in chemical reaction network theory. In: Aris, R., Aronson, D.G., Swinney, H.L. (eds.) Patterns and Dynamics in Reactive Media, pp. 43–70. Springer, New York (1991)
Feng, J., Kurtz, T.G.: Large Deviation for Stochastic Processes. Math. Surveys and Mono- graphs 131. American Mathematically Society, Providence (2006)
Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Spinger, New York (1998)
Galstyan, V., Saakian, D.B.: Dynamics of the chemical master equation, a strip of chains of equations in d-dimensional space. Phys. Rev. E. 86, 011125 (2012)
Ge, H., Qian, H.: The physical origins of entropy production, free energy dissipation and their mathematical representations. Phys. Rev. E 81, 051133 (2010)
Ge, H., Qian, H.: Landscapes of non-gradient dynamics without detailed balance: stable limit cycles and multiple attractors. Chaos 22, 023140 (2012)
Ge, H., Qian, H.: Heat dissipation and nonequilibrium thermodynamics of quasi-steady states and open driven steady state. Phys. Rev. E. 87, 062125 (2013)
Ge, H., Qian, H.: Nonequilibrium thermodynamic formalism of nonlinear chemical reaction systems: I. Waage-Guldbergs law of mass action. arXiv:1601.03158 (2015)
Ge, H., Qian, M., Qian, H.: Stochastic theory of nonequilibrium steady states (Part II): applications in chemical biophysics. Phys. Rep. 510, 87–118 (2012)
Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)
Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001)
Hill, T.L.: Some general principles in free energy transduction. Proc. Natl. Acad. Sci. USA 80, 2922–2925 (1983)
Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)
Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)
Hu, G.: Lyapounov function and stationary probability distributions. Zeit. Phys. B 65, 103–106 (1986)
Ishii, H., Mitake, H.: Representation formulas for solutions of Hamilton–Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56(5), 2159–2184 (2007)
Jiang, D.Q., Qian, M., Qian, M.P.: Mathematical Theory of Nonequilibrium Steady States. Lecture Notes in Mathematics. Springer, Berlin (2004)
Van Kampen, N.G.: A power series expansion of the master equations. Can. J. Phys. 39, 551–567 (1961)
Kirkwood, J.G.: Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300–313 (1935)
Keizer, J.: Statistical thermodynamics of nonequilibrium processes. Springer, New York (1987)
Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoc. Proc. Appl. 6, 223–240 (1978)
Landau, L.D., Lifshitz, E.M.: Mechanics (Course of Theoretical Physics), Vol 1, 3rd edn. Butterworth-Heinemann, Oxford (1976)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. 5, 183–191 (1961)
Lee, L.W., Yin, L., Zhu, X.M., Ao, P.: Generic enzymatic rate equation under living conditions. J. Biol. Sys. 15, 495–514 (2007)
Leontovich, M.A.: Basic equations of kinetic gas theory from the viewpoint of the theory of random processes. J. Exp. Theoret. Phys. 5, 211–231 (1935)
Lewis, G.N.: A new principle of equilibrium. Proc. Natl. Acad. Sci. USA 11, 179–183 (1925)
Moerner, W.E.: Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel lecture). Angew. Chem. Int. Ed. 54, 8067–8093 (2015)
Othmer, H.G.: Nonuniqueness of equilibria in closed reaction systems. Chem. Eng. Sci. 31, 993–1003 (1976)
Polettini, M., Esposito, M.: Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. J. Chem. Phys. 141, 024117 (2014)
Polettini, M., Wachtel, A., and Esposito, M.: Dissipation in noisy chemical networks: the role of deficiency. arXiv:1507.00058 (2015)
Qian, H.: The zeroth law of thermodynamics and volume-preserving conservative system in equilibrium with stochastic damping. Phys. Lett. A 378, 609–616 (2014)
Qian, H., Beard, D.A.: Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem. 114, 213–220 (2005)
Qian, H., Beard, D.A., Liang, S.-D.: Stoichiometric network theory for nonequilibrium biochemical systems. Eur. J. Biochem. 270, 415–421 (2003)
Qian, H., Kjelstrup, S., Kolomeisky, A.B., Bedeaux, D.: Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces. J. Phys. 28, 1530000000000004 (2016)
Santillán, M., Qian, H.: Irreversible thermodynamics in multiscale stochastic dynamical systems. Phys. Rev. E 83, 041130 (2011)
Schuster, S., Schuster, R.: A generalization of Wegscheider’s condition: implications for properties of steady states and for quasi-steady-state approximation. J. Math. Chem. 3, 25–42 (1989)
Shapiro, N.Z., Shapley, L.S.: Mass action laws and the Gibbs free energy function. J. SIAM 13, 353–375 (1965)
Shear, D.B.: An analog of the Boltzmann H-theorem (a Lyapunov function) for systems of coupled chemical reactions. J. Theor. Biol. 16, 212–228 (1967)
Shear, D.B.: Stability and uniqueness of the equilibrium point in chemical reaction systems. J. Chem. Phys. 48, 4144–4147 (1968)
Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Chapman & Hall, London (1995)
Vellela, M., Qian, H.: Stochastic dynamics and nonequilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited. J. Roy. Soc. Interf. 6, 925–940 (2009)
Acknowledgements
The authors would like to thank Xiao Jin, Tiejun Li for comments and helpful discussions. H. Ge is supported by NSFC (Nos. 21373021 and 11622101), and the 863 program (No. 2015AA020406).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ge, H., Qian, H. Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law. J Stat Phys 166, 190–209 (2017). https://doi.org/10.1007/s10955-016-1678-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-016-1678-6