Skip to main content

Large Communities in a Scale-Free Network


We prove the existence of a large complete subgraph w.h.p. in a preferential attachment random graph process with an edge-step. That is, we consider a dynamic stochastic process for constructing a graph in which at each step we independently decide, with probability \(p\in (0,1)\), whether the graph receives a new vertex or a new edge between existing vertices. The connections are then made according to a preferential attachment rule. We prove that the random graph \(G_{t}\) produced by this so-called generalized linear preferential (GLP) model at time t contains a complete subgraph whose vertex set cardinality is given by \(t^\alpha \), where \(\alpha = (1-\varepsilon )\frac{1-p}{2-p}\), for any small \(\varepsilon >0\) asymptotically almost surely.

This is a preview of subscription content, access via your institution.


  1. Abramowitz, M.: Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications Incorporated, New York (1974)

    MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  4. Bianconi, G., Marsili, M.: Emergence of large cliques in random scale-free networks. Europhys. Lett. 74(4), 740 (2006)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  5. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1–34. Wiley, Weinheim (2003)

    Google Scholar 

  6. Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Math. 1(1), 1–35 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chung, F., Lu, L.: Complex Graphs and Networks (Cbms Regional Conference Series in Mathematics). American Mathematical Society, Boston (2006)

    Google Scholar 

  8. Cooper, C., Frieze, A.: A general model of undirected web graphs. In: Meyer auf der Heide, F. (ed.) Algorithms ESA 2001, vol. 2161 of Lecture Notes in Computer Science, pp. 500–511. Springer, Berlin (2001)

  9. Dommers, S., van der Hofstad, R., Hooghiemstra, G.: Diameters in preferential attachment models. J. Stat. Phys. 139(1), 72–107 (2010)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  10. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW (Physics). Oxford University Press, Inc., New York (2003)

    Book  MATH  Google Scholar 

  11. Durrett, R.: Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press, New York (2006)

    Book  Google Scholar 

  12. Eggemann, N., Noble, S.D.: The clustering coefficient of a scale-free random graph. Discret. Appl. Math. 159(10), 953–965 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  14. Janson, S., Luczak, T., Norros, I.: Large cliques in a power-law random graph. J. Appl. Probab. 47(4), 1124–1135 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    ADS  Article  Google Scholar 

  16. Móri, T.: The maximum degree of the Barabasi–Albert random tree. Comb. Probab. Comput. 14, 339–348 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  18. Ostroumova. L., Samosvat, E.: Global clustering coefficient in scale-free networks. In: Lectures Notes in Computer Science (2014)

  19. Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Lectures Notes in Computer Science (2013)

  20. Van Der Hofstad, R: Random graphs and complex networks (2009). Available at

  21. Wang, X., Liu, X., Loguinov, D.: Modeling the evolution of degree correlation in scale-free topology generators. In: INFOCOM 2008. The 27th Conference on Computer Communications. IEEE (2008)

  22. Wang, W.-Q., Zhang, Q.-M., Zhou, T.: Evaluating network models: a likelihood analysis. Europhys. Lett. 98(2), 28004 (2012)

    ADS  Article  Google Scholar 

Download references


C.A. was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant No. 2013/24928-2. R.S. has been partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by FAPEMIG (Programa Pesquisador Mineiro), Grant No. PPM 00600/16. R.R. has been partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rémy Sanchis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alves, C., Ribeiro, R. & Sanchis, R. Large Communities in a Scale-Free Network. J Stat Phys 166, 137–149 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Complex networks
  • Clique
  • Preferential attachment
  • Concentration bounds

Mathematics Subject Classification

  • Primary 05C82
  • Secondary 60K40
  • 68R10