Skip to main content

Position–Momentum Uncertainty Relation for an Open Macroscopic Quantum System

Abstract

The macroscopic quantum systems are considered as a bridge between quantum and classical systems. In this study, we explore the validity of the original Heisenberg position–momentum uncertainty relation for a macroscopic harmonic oscillator interacting with environmental micro-particles. Our results show that, in the quasi-classical situation, the original uncertainty relation does not hold, when the number of particles in the environment is small. Nonetheless, increasing the environmental degrees of freedom removes the violation bounds in the regions of our investigation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theo. Phys. 69, 80–100 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  2. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. lett. 54, 857–860 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  3. Leggett, A.J.: Quantum mechanics at the macroscopic level. In: Souletie, J., Vannimenus, J., Stora, J. (eds.) Chance and Matter. Elsevier Science Publishers, Amsterdam (1987)

    Google Scholar 

  4. Takagi, S.: Macroscopic Quantum Tunneling. Cambridge University Press, New York (2005)

    Google Scholar 

  5. Caldeira, A.O.: An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  6. Yang, L.P., Cai, C.Y., Xu, D.Z., Sun, C.P.: Exact non-Markovian master equation and dispersive probing of non-Markovian process. arXiv:1209.5510 (2012)

  7. Schlosshauer, M.: Decoherence and the Quantum to Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  8. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B: Condens. Matter 59, 223–243 (1985)

    ADS  Article  Google Scholar 

  9. Anastopoulos, C., Halliwell, J.J.: Generalized uncertainty relations and long-time limits for quantum Brownian motion models. Phys. Rev. D 51, 6870–6885 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  10. Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003)

    ADS  Article  Google Scholar 

  11. McDermott, R.M., Redmount, I.H.: Coupled classical and quantum oscillators. arXiv:quant-ph/0403184 (2004)

  12. Ozawa, M.: Physical content of Heisenberg’s uncertainty relation: limitation and reformulation. Phys. Lett. A 318, 21–29 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. Ozawa, M.: Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A 320, 367–374 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  14. Werner, R.F.: The uncertainty relation for joint measurement of position and momentum. arXiv:quant-ph/0405184 (2004)

  15. Busch, P., Heinonen, T., Lahti, P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)

    ADS  Article  Google Scholar 

  16. Rozema, L., Darabi, A., Mahler, D., Hayat, A., Soudagar, Y.: Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012)

    ADS  Article  Google Scholar 

  17. Sulyok, G., Sponar, S., Erhart, J., Badurek, G., Ozawa, M., Hasegawa, Y.: Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A 88, 022110 (2013)

    ADS  Article  Google Scholar 

  18. Tirandaz, A., Shafiee, A.: Spin uncertainty relation under decoherence. Quantum Stud.: Math. Found. 3, 189–201 (2016)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shafiee.

Appendix

Appendix

Here, we derive the violation range of uncertainty relation, when the system is coupled to three particles of the environment. Considering a given violation range as

$$\begin{aligned} \Delta {q^2} \Delta {p^2}<\frac{\bar{h}^2}{4} \end{aligned}$$
(43)

One can show that the product of \(\langle q^2\rangle \langle p^2\rangle \) in relations (30) and (31) leads to:

$$\begin{aligned} \frac{1}{4\pi ^2}\frac{\big [\big (a^2b^2+1\big )d^2+\big (1-2a^2b^2\big )d\big ]^3}{\big [\big (3a^4d^2+6a^2b^2d+3b^4\big )\big (3a^4+6a^2b^2d+3d^2b^4\big )\big ]^\frac{3}{2}} \end{aligned}$$
(44)

where \(a^2+b^2=1\) and d is defined. The above relation is simplified to \( 1/4\pi ^2(3)^3\), after some mathematical manipulation. This concludes the relation (38) for \(N=3\). The same method could be used to prove similar results for other Ns.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naeij, H.R., Shafiee, A. Position–Momentum Uncertainty Relation for an Open Macroscopic Quantum System. J Stat Phys 165, 1141–1152 (2016). https://doi.org/10.1007/s10955-016-1666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1666-x

Keywords

  • Open macroscopic quantum system
  • Harmonic environment
  • Heisenberg uncertainty relation