## Abstract

Interacting particle systems in the KPZ universality class on a ring of size *L* with *O*(*L*) number of particles are expected to change from KPZ dynamics to equilibrium dynamics at the so-called relaxation time scale \(t=O(L^{3/2})\). In particular the system size is expected to have little effect to the particle fluctuations in the sub-relaxation time scale \(1\ll t\ll L^{3/2}\). We prove that this is indeed the case for the totally asymmetric simple exclusion process (TASEP) with two types of initial conditions. For flat initial condition, we show that the particle fluctuations are given by the Airy\(_1\) process as in the infinite TASEP with flat initial condition. On the other hand, the TASEP on a ring with step initial condition is equivalent to the periodic TASEP with a certain shock initial condition. We compute the fluctuations explicitly both away from and near the shocks for the infinite TASEP with same initial condition, and then show that the periodic TASEP has same fluctuations in the sub-relaxation time scale.

This is a preview of subscription content, access via your institution.

## Notes

- 1.
- 2.
A lattice path is a path consists of unit horizontal/vertical line segments whose endpoints are lattice points.

- 3.
\(|\mathbf v|=\sqrt{\mathbf v_1^2+\mathbf v_2^2}\) denotes the norm of \(\mathbf v=(\mathbf v_1, \mathbf v_2)\).

- 4.
These results are for the Poissonian version of DLPP and the geometric random variables, but the results extend to exponential random variables. But we do not need these results. Instead we use the ideas in them to prove Proposition 2.1 below which implies this statement for exponential variables.

- 5.
In the periodic DLPP case, we even have \(H_{\mathbf c_i}(\mathbf q)=H_{\mathbf c_{i+1}}(\mathbf q+\mathbf v)\) and \(H_{\mathbf c_{i+1}}(\mathbf q)=H_{\mathbf c_{i+2}}(\mathbf q+\mathbf v)\) due to the periodicity. See Fig. 11.

## References

- 1.
Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab.

**33**(5), 1643–1697 (2005) - 2.
Baik, J., Deift, P., McLaughlin, K.T.-R., Miller, P., Zhou, X.: Optimal tail estimates for directed last passage site percolation with geometric random variables. Adv. Theor. Math. Phys.

**5**(6), 1207–1250 (2001) - 3.
Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP. In: Griebel, M., (ed.) Singular Phenomena and Scaling in Mathematical Models, pp. 91–110. Springer, New York (2014)

- 4.
Baik, J., Liu, Z.: Fluctuations of TASEP on a ring in relaxation time scale. arXiv:1605.07102

- 5.
Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the slow bond problem. arxiv:1408.3464

- 6.
Ben, G., Corwin, I.: Current fluctuations for TASEP: a proof of the Prähofer-Spohn conjecture. Ann. Probab.

**39**(1), 104–138 (2011) - 7.
Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab.

**13**(50), 1380–1418 (2008) - 8.
Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the \({\rm Airy}_1\) process. Int. Math. Res. Pap. IMRP (1), Art. ID rpm002, 47 (2007)

- 9.
Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys.

**129**(5–6), 1055–1080 (2007) - 10.
Bothner, T., Liechty, K.: Tail decay for the distribution of the endpoint of a directed polymer. Nonlinearity

**26**(5), 1449–1472 (2013) - 11.
Brankov, J.G., Papoyan, V.B., Poghosyan, V.S., Priezzhev, V.B.: The totally asymmetric exclusion process on a ring: exact relaxation dynamics and associated model of clustering transition. Phys. A

**368**(8), 471480 (2006) - 12.
Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math.

**195**(2), 441–508 (2014) - 13.
Corwin, I., Liu, Z., Wang, D.: Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab.

**26**(4), 2030–2082 (2016) - 14.
Derrida, B., Lebowitz, J.L.: Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett.

**80**(2), 209–213 (1998) - 15.
Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last passage percolation models. Probab. Theory Relat. Fields

**161**(1–2), 61–109 (2015) - 16.
Gupta, S., Majumdar, S.N., Godrèche, C., Barma, M.: Tagged particle correlations in the asymmetric simple exclusion process: finite-size effects. Phys. Rev. E

**76**, 021112 (2007) - 17.
Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett.

**68**(6), 725–728 (1992) - 18.
Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys.

**209**(2), 437–476 (2000) - 19.
Johansson, K.: Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Relat. Fields

**116**(4), 445–456 (2000) - 20.
Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys.

**242**(1–2), 277–329 (2003) - 21.
Lee, D.S., Kim, D.: Universal fluctuation of the average height in the early-time regime of one-dimensional Kardar–Parisi–Zhang-type growth. J. Stat. Mech. Theory Exp.

**2006**(8):P08014 (2006) - 22.
Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys.

**108**(5–6), 1071–1106 (2002). Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays - 23.
Proeme, A., Blythe, R.A., Evans, M.R.: Dynamical transition in the open-boundary totally asymmetric exclusion process. J. Phys. A

**44**, 035003 (2011) - 24.
Prolhac, S.: Finite-time fluctuations for the totally asymmetric exclusion process. Phys. Rev. Lett.

**116**, 090601 (2016) - 25.
Quastel, J., Remenik, D.: Tails of the endpoint distribution of directed polymers. Ann. Inst. Henri Poincaré Probab. Stat.

**51**(1), 1–17 (2015) - 26.
Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A

**38**(33), L549–L556 (2005) - 27.
Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys.

**159**(1), 151–174 (1994) - 28.
Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys.

**177**(3), 727–754 (1996)

## Acknowledgments

We would like to thank Ivan Corwin and Patrik Ferrari for useful conversations and comments. The work of Jinho Baik was supported in part by NSF Grants DMS1361782.

## Author information

### Affiliations

### Corresponding author

## Appendix: Density Profile of TASEP with Periodic Step Initial Condition

### Appendix: Density Profile of TASEP with Periodic Step Initial Condition

In this appendix, we summarize the macroscopic picture of the periodic TASEP and the infinite TASEP with periodic step initial condition (1.9) via solving the Burger’s equation. We state the density profile, and the locations of the shock and any given particle as time *t* without much details since the computation is standard. Furthermore we do not study the issue of the convergence in the hydrodynamic limit to the Burger’s solution; the computations in this Appendix are used only to provide intuitive ideas and are not used in the proofs of the theorems.

We assume that \(0<\rho \le \frac{1}{2}\). Consider the Burger’s equation for the infinite TASEP

with the periodic initial condition

where [*x*] means the largest integer which is less than or equal to *x*. The entropy solution *q*(*x*; *t*) represents the local density profile at location *xL* and time *tL*. Note that the solution is also periodic, \(q(x+1, t)=q(x,t)\), and hence *q*(*x*; *t*) also represents the local density profile for the periodic TASEP with the same initial condition.

We now solve the above Burger’s equation explicitly. Due to the periodicity, we state the formula of *q*(*x*; *t*) for *x* only in an interval of length 1.

For time \(t\le \frac{1}{4\rho }\), there is no shock and the solution is given by the following: For \(0\le t\le \rho \),

For \(\rho \le t\le \frac{1}{4\rho }\),

The shocks are generated at time \(t=\frac{1}{4\rho }\) at the locations \(\frac{1}{4\rho }+\mathbb {Z}\). (In terms of the TASEP, the above time corresponds to the time \(\frac{1}{4\rho }L=\frac{1}{4\rho ^2}N\).) Let us denote by \(x_\mathrm{s}(t)\) the location of the shock of the Burger’s equation at time *t* which was initially generated at the location \(-1+\frac{1}{4\rho }\), i.e. \(x_\mathrm{s}(\frac{1}{4\rho })=-1+\frac{1}{4\rho }\). One can find that the shock location is given by

and the density profile is given by

for all \(t\ge \frac{1}{4\rho }\). This shows that the density profile difference at the shock, \(\Delta q_\mathrm{s}(t):= \lim _{x\rightarrow x_\mathrm{s}(t)^+} q(x; t)-\lim _{x\rightarrow x_\mathrm{s}(t)^-} q(x; t)\), is given by \(\Delta q_\mathrm{s}(t)=\frac{1}{2t}\) at time \(t\ge \frac{1}{4\rho }\). As \(t\rightarrow \infty \), this gap tends to zero and \(q(x;t)\rightarrow \rho \) for all \(x\in \mathbb {R}\). However, the density profile is not yet “flat enough” when \(t\ll L^{1/2}\) (which corresponds to the sub-relaxation time scale \(t\ll L^{3/2}\) in TASEP). Indeed, note that that when \(t\ll L^{1/2}\), the gap satisfies \( \Delta q_\mathrm{s}(t)\gg \frac{1}{L^{1/2}}\) (and the absolute value of the slope of the density profile at continuous points is \(\gg \frac{1}{L^{1/2}}\).) In terms of the TASEP scale of time and space, \(\Delta q_\mathrm{s}(t) L \gg L^{1/2} \gg (tL)^{1/3}\) which means that the gap is greater than the KPZ height fluctuations.

Given the formula of the density profile, we can compute the expected location of the \([\alpha N]\)-th particle (the one initially located at \(-N+[\alpha N]\)) heuristically. Here \(\alpha \) is an arbitrary constant satisfying \(0<\alpha \le 1\). This particle meets a shock at the discrete (rescaled by *L*) times

The particles location (rescaled by *L*) is heuristically given by

for time satisfying

## Rights and permissions

## About this article

### Cite this article

Baik, J., Liu, Z. TASEP on a Ring in Sub-relaxation Time Scale.
*J Stat Phys* **165, **1051–1085 (2016). https://doi.org/10.1007/s10955-016-1665-y

Received:

Accepted:

Published:

Issue Date:

### Keywords

- TASEP on a ring
- Sub-relaxation time scale
- KPZ universality class