Advertisement

Journal of Statistical Physics

, Volume 165, Issue 6, pp 1051–1085 | Cite as

TASEP on a Ring in Sub-relaxation Time Scale

  • Jinho Baik
  • Zhipeng Liu
Article

Abstract

Interacting particle systems in the KPZ universality class on a ring of size L with O(L) number of particles are expected to change from KPZ dynamics to equilibrium dynamics at the so-called relaxation time scale \(t=O(L^{3/2})\). In particular the system size is expected to have little effect to the particle fluctuations in the sub-relaxation time scale \(1\ll t\ll L^{3/2}\). We prove that this is indeed the case for the totally asymmetric simple exclusion process (TASEP) with two types of initial conditions. For flat initial condition, we show that the particle fluctuations are given by the Airy\(_1\) process as in the infinite TASEP with flat initial condition. On the other hand, the TASEP on a ring with step initial condition is equivalent to the periodic TASEP with a certain shock initial condition. We compute the fluctuations explicitly both away from and near the shocks for the infinite TASEP with same initial condition, and then show that the periodic TASEP has same fluctuations in the sub-relaxation time scale.

Keywords

TASEP on a ring Sub-relaxation time scale KPZ universality class 

Notes

Acknowledgments

We would like to thank Ivan Corwin and Patrik Ferrari for useful conversations and comments. The work of Jinho Baik was supported in part by NSF Grants DMS1361782.

References

  1. 1.
    Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baik, J., Deift, P., McLaughlin, K.T.-R., Miller, P., Zhou, X.: Optimal tail estimates for directed last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5(6), 1207–1250 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP. In: Griebel, M., (ed.) Singular Phenomena and Scaling in Mathematical Models, pp. 91–110. Springer, New York (2014)Google Scholar
  4. 4.
    Baik, J., Liu, Z.: Fluctuations of TASEP on a ring in relaxation time scale. arXiv:1605.07102
  5. 5.
    Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the slow bond problem. arxiv:1408.3464
  6. 6.
    Ben, G., Corwin, I.: Current fluctuations for TASEP: a proof of the Prähofer-Spohn conjecture. Ann. Probab. 39(1), 104–138 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13(50), 1380–1418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the \({\rm Airy}_1\) process. Int. Math. Res. Pap. IMRP (1), Art. ID rpm002, 47 (2007)Google Scholar
  9. 9.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129(5–6), 1055–1080 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bothner, T., Liechty, K.: Tail decay for the distribution of the endpoint of a directed polymer. Nonlinearity 26(5), 1449–1472 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brankov, J.G., Papoyan, V.B., Poghosyan, V.S., Priezzhev, V.B.: The totally asymmetric exclusion process on a ring: exact relaxation dynamics and associated model of clustering transition. Phys. A 368(8), 471480 (2006)Google Scholar
  12. 12.
    Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math. 195(2), 441–508 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Corwin, I., Liu, Z., Wang, D.: Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab. 26(4), 2030–2082 (2016)Google Scholar
  14. 14.
    Derrida, B., Lebowitz, J.L.: Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80(2), 209–213 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last passage percolation models. Probab. Theory Relat. Fields 161(1–2), 61–109 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gupta, S., Majumdar, S.N., Godrèche, C., Barma, M.: Tagged particle correlations in the asymmetric simple exclusion process: finite-size effects. Phys. Rev. E 76, 021112 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68(6), 725–728 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Johansson, K.: Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Relat. Fields 116(4), 445–456 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1–2), 277–329 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, D.S., Kim, D.: Universal fluctuation of the average height in the early-time regime of one-dimensional Kardar–Parisi–Zhang-type growth. J. Stat. Mech. Theory Exp. 2006(8):P08014 (2006)Google Scholar
  22. 22.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108(5–6), 1071–1106 (2002). Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdaysGoogle Scholar
  23. 23.
    Proeme, A., Blythe, R.A., Evans, M.R.: Dynamical transition in the open-boundary totally asymmetric exclusion process. J. Phys. A 44, 035003 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Prolhac, S.: Finite-time fluctuations for the totally asymmetric exclusion process. Phys. Rev. Lett. 116, 090601 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Quastel, J., Remenik, D.: Tails of the endpoint distribution of directed polymers. Ann. Inst. Henri Poincaré Probab. Stat. 51(1), 1–17 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38(33), L549–L556 (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations