Skip to main content
Log in

Measure Valued Solutions to the Spatially Homogeneous Boltzmann Equation Without Angular Cutoff

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A uniform approach is introduced to study the existence of measure valued solutions to the homogeneous Boltzmann equation for both hard potential with finite energy, and soft potential with finite or infinite energy, by using Toscani metric. Under the non-angular cutoff assumption on the cross-section, the solutions obtained are shown to be in the Schwartz space in the velocity variable as long as the initial data is not a single Dirac mass without any extra moment condition for hard potential, and with the boundedness on moments of any order for soft potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152, 327–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions. Arch. Ration. Mech. Anal. 202, 599–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential. J. Funct. Anal. 262, 915–1010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff. Kyoto J. Math. 52, 433–463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V.: The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk SSSR 225(6), 1041–1044 (1975)

    ADS  MathSciNet  Google Scholar 

  6. Bobylev, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Math. Phys. Rev. 7, 111–233 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Cannone, M., Karch, G.: Infinite energy solutions to the homogeneous Boltzmann equation. Commun. Pure Appl. Math. 63, 747–778 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199, 521–546 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fournier, N.: Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition. Ann. Appl. Probab. 25, 860–897 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fournier, N., Guérin, H.: On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity. J. Stat. Phys. 131, 749–781 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fournier, N., Mouhot, C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Commun. Math. Phys. 289, 803–824 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81, 901–934 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Huo, Z.H., Morimoto, Y., Ukai, S., Yang, T.: Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff. Kinet. Relat. Models 1, 453–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacob, N.: Pseudo-Differential Operators and Markov Processes. Fourier Analysis and Semigroups, vol. 1. Imperial College Press, London (2001)

  15. Lu, X., Mouhot, C.: On measure solutions of the Boltzmann equation, part I: moment production and stability estimates. J. Differ. Equ. 252, 3305–3363 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lu, X., Wennberg, B.: Solutions with increasing energy for the spatially homogeneous Boltzmann equation. Nonlinear Anal. Real World Appl. 3, 243–258 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Morimoto, Y.: A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinet. Relat. Models 5, 551–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discret. Contin. Dyn. Syst. Ser. A 24, 187–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morimoto, Y., Wang, S., Yang, T.: A new characterization and global regularity of infinite energy solutions to the homogeneous Boltzmann equation. J. Math. Pures Appl. 103, 809–829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morimoto, Y., Wang, S., Yang, T.: Moment classification of infinite energy solutions to the homogeneous Boltzmann equation. Anal. Appl. (2015). doi:10.1142/S0219530515500232, arXiv:1506.06493

  22. Morimoto, Y., Yang, T.: Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 429–442 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Pulvirenti, A., Toscani, G.: The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation. Ann. Math. Pura Appl. 171, 181–204 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pulvirenti, A., Wennberg, B.: Lower bounds for the solutions to the Kac and the Boltzmann equation. In: Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), pp. 437-446 (1996)

  25. Pulvirenti, A., Wennberg, B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Commun. Math. Phys. 183, 145–160 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas. J. Stat. Phys. 94, 619–637 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Fluid Mathematical Fluid Dynamics. Elsevier Science, New York (2002)

    Google Scholar 

  29. C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, (2003)

  30. Zhang, X., Zhang, X.: Probability approaches to spatially homogeneous Boltzmann equations. Stoch. Anal. Appl. 25(6), 1129–1150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to express their hearty gratitude to anonymous referees for many suggestions and advises which improved the submitted manuscript. The research of the first author was supported in part by Grant-in-Aid for Scientific Research No.25400160, Japan Society for the Promotion of Science. The research of the third author was supported in part by the General Research Fund of Hong Kong, CityU No. 11303614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, Y., Wang, S. & Yang, T. Measure Valued Solutions to the Spatially Homogeneous Boltzmann Equation Without Angular Cutoff. J Stat Phys 165, 866–906 (2016). https://doi.org/10.1007/s10955-016-1655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1655-0

Keywords

Mathematics Subject Classification

Navigation