Skip to main content
Log in

A Note on Dynamical Models on Random Graphs and Fokker–Planck Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We address the issue of the proximity of interacting diffusion models on large graphs with a uniform degree property and a corresponding mean field model, i.e., a model on the complete graph with a suitably renormalized interaction parameter. Examples include Erdős–Rényi graphs with edge probability \(p_n\), n is the number of vertices, such that \(\lim _{n \rightarrow \infty }p_n n= \infty \). The purpose of this note is twofold: (1) to establish this proximity on finite time horizon, by exploiting the fact that both systems are accurately described by a Fokker–Planck PDE (or, equivalently, by a nonlinear diffusion process) in the \(n=\infty \) limit; (2) to remark that in reality this result is unsatisfactory when it comes to applying it to systems with n large but finite, for example the values of n that can be reached in simulations or that correspond to the typical number of interacting units in a biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Stat. Phys. 138, 270–290 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bertini, L., Giacomin, G., Poquet, C.: Synchronization and random long time dynamics for mean-field plane rotators. Probab. Theory Relat. Fields 160, 593–653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: Random Graphs. Cambridge studies in advanced mathematics, vol. 73, 2nd edn (2001)

  5. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124, 1377–1397 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140, 19–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 17 (2012)

  8. Dahms, D.: Time behavior of a spherical mean field model. PhD Thesis, Technische Universität Berlin (2002)

  9. Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84, 735–772 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Del Genio, C.I., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS ONE 5(4), 1–7 (2010)

    Google Scholar 

  11. De Masi, A., Presutti, E., Vares, M.E.: Escape from the unstable equilibrium in a random process with infinitely many interacting particles. J. Stat. Phys. 44, 645–696 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dembo, A., Montanari, A.: Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24, 137–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74 (2004)

  14. Gärtner, J.: On McKean-Vlasov limit for interacting diffusions. Mathematische Nachrichten 137, 197–248 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giacomin, G., Luçon, E., Poquet, C.: Coherence stability and effect of random natural frequencies in populations of coupled oscillators. J. Dyn. Differ. Equ. 26, 333–367 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giacomin, G., Pakdaman, K., Pellegrin, X.: Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25, 1247–1273 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)

    Book  MATH  Google Scholar 

  18. Kuramoto, Y., Shinomoto, S., Sakaguchi, H.: Active rotator model for large populations of oscillatory and excitable elements. In: Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (Kyoto, 1985), Lecture Notes in Biomathematics, vol. 71, pp. 329–337. Springer (1987)

  19. Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp. Theory Stat. Phys. 34, 523–535 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Luçon, E.: Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16, 792–829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luçon, E., Poquet, C.: Long Time Ddynamics and Disorder-Induced Traveling Waves in the Stochastic Kuramoto Model. arXiv:1505.00497, Ann. IHP(B) (to appear)

  22. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  23. McKay, B.D., Wormald, N.C.: Uniform generation of random regular graphs of moderate degree. J Algorithms 11(1), 52–67 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Olivieri, E., Vares, M.E.: Large Deviations and Metastability, Encyclopedia of Mathematics and its Applications, 100. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  25. Olmi, S., Navas, A., Boccaletti, S., Torcini, A.: Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 90, 042905 (2014)

  26. Shinomoto, S., Kuramoto, Y.: Phase transitions in active rotator systems. Prog. Theory Phys. 75, 1105–1110 (1986)

    Article  ADS  Google Scholar 

  27. Silver, H., Frankel, N.E., Ninham, B.W.: A class of mean field models. J. Math. Phys. 13, 468–474 (1972)

    Article  ADS  Google Scholar 

  28. Sznitman, A.-S.: Topics in Propagation of Chaos. Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991)

  29. Vlasov, V., Macau, E.E.N., Pikovsky, A.: Synchronization of oscillators in a Kuramoto-type model with generic coupling. Chaos 24, 023120 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

G.G. is grateful to Bastien Fernandez, Roberto Livi and Justin Salez for very helpful discussions. We would like to thank the referees for their careful reading and useful remarks on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giambattista Giacomin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delattre, S., Giacomin, G. & Luçon, E. A Note on Dynamical Models on Random Graphs and Fokker–Planck Equations. J Stat Phys 165, 785–798 (2016). https://doi.org/10.1007/s10955-016-1652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1652-3

Keywords

Mathematics Subject Classification

Navigation