Skip to main content
Log in

A Method for Identification of Critical States of Open Stochastic Dynamical Systems Based on the Analysis of Acceleration

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new method of fractal analysis of nonstationary time series for recognition of critical (precatastrophic) and noncritical (quiet) modes of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. Unlike the classical DFA that originates in the R/S analysis and implies investigation of the time series by studying the properties of a mixture of velocities and accelerations, the new method focuses on the study of accelerations only. Because at the most basic level the equations of motion of stochastic dynamical systems are expressions for the acceleration, the suggested method results to be more suitable for recognition of critical and noncritical states. Using both model and real data, we demonstrate superiority of the newly developed method over the conventional DFA and provide a detailed discussion on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashkenazy, Y., Ivanov, PCh., Havlin, S., Peng, C.-K., Goldberger, A.L., Stanley, H.E.: Magnitude and sign correlations in heartbeat fluctuations. Phys. Rev. Lett. 86, 1900–1903 (2001)

    Article  ADS  Google Scholar 

  2. Carbone, A., Castelli, G., Stanley, H.E.: Time-dependent Hurst exponent in financial time series. Physica A 344, 267–271 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. Costa, M.D, Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906-1–021906-18 (2005). doi:10.1103/PhysRevE.71.021906

  4. Feder, J.: Fractals. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  5. Filatov, D.M., Lyubushin, A.A.: Assessment of seismic hazard of the Japanese islands based on fractal analysis of GPS time series. Izv. Phys. Solid Earth (in press)

  6. Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, PCh., Peng, C.-K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl Acad. Sci. U.S.A. 99, 2466–2472 (2002)

    Article  ADS  Google Scholar 

  7. Haken, H.: Information and Self-Organization: A Macroscopic Approach to Complex Systems. Springer, Berlin (2006). doi:10.1007/3-540-33023-2

    MATH  Google Scholar 

  8. Hurst, H.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)

    Google Scholar 

  9. Ivanov, PCh., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Stanley, H.E., Struzik, Z.R.: From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos 11, 641–652 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Kantelhardt, J.W.: Fractal and Multifractal Time Series. arXiv:0804.0747 (2008)

  11. Klimontovich, YuL: Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems. Springer, Berlin (1991). doi:10.1007/978-94-011-3426-2

    Book  MATH  Google Scholar 

  12. Klimontovic, YuL: Statistical Theory of Open Systems: A Unified Approach to Kinetic Description of Processes in Active Systems. Springer, Berlin (1995). doi:10.1007/978-94-011-0175-2

    Book  Google Scholar 

  13. Leistedt, S.J.-J., Linkowski, P., Lanquart, J.-P., Mietus, J.E., Davis, R.B., Goldberger, A.L., Costa, M.D.: Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics. Transl. Psychiatry 1, e27 (2011). doi:10.1038/tp.2011.23

    Article  Google Scholar 

  14. Lipsitz, L.A., Goldberger, A.L.: Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. J. Am. Med. Assoc. 287, 1806–1809 (1992). doi:10.1001/jama.1992.03480130122036

    Article  Google Scholar 

  15. Lyubushin, A.A.: Multifractal parameters of low-frequency microseisms. In: de Rubeis, V., Czechowski, Z., Teisseyre, R. (eds.) Geoplanet: Earth and Planetary Sciences, Synchronization and Triggering: From Fracture to Earthquake Processes, pp. 253–272. Springer, Berlin (2010)

    Chapter  Google Scholar 

  16. Lyubushin, A.A., Yakovlev, P.V.: Properties of GPS noise at Japan islands before and after Tohoku mega earthquake. SpringerPlus 3, 364–381 (2014). doi:10.1186/2193-1801-3-364

    Article  Google Scholar 

  17. Mandelbrot, B.B.: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer, New York (1997)

    Book  MATH  Google Scholar 

  18. Oświȩcimka, P., Kwapień, J., Drożdż, S., Rak, R.: Investigating multifractality of stock market fluctuations using wavelet and detrending fluctuation methods. Acta Phys. Polon. B 36, 2447–2457 (2005)

    ADS  Google Scholar 

  19. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Simons, M., Stanley, H.E.: Statistical properties of DNA sequences. Physica A 221, 180–192 (1995)

    Article  ADS  MATH  Google Scholar 

  20. Peng, C.-K., Hausdorff, J.M., Mietus, J.E., Havlin, S., Stanley, H.E., Goldberger, A.L.: Fractals in physiological control: from heart beat to gait. In: Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.) Lévy Flights and Related Topics in Physics, Proceedings of the International Workshop held at Nice, France, 27–30 June 1994. Lecture Notes in Physics, vol. 450, pp. 313–330. Springer, Berlin (1995)

  21. Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  ADS  Google Scholar 

  22. PhysioBank Archive, a resource supported by the National Institute of General Medical Sciences (NIGMS) and National Institute of Biomedical Imaging and Bioengineering (NIBIB), the USA. https://physionet.org/physiobank/database/

  23. Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  24. Voit, J.: The Statistical Mechanics of Financial Markets. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees for their comments that have allowed to clarify and substantially improve the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis M. Filatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, D.M. A Method for Identification of Critical States of Open Stochastic Dynamical Systems Based on the Analysis of Acceleration. J Stat Phys 165, 681–692 (2016). https://doi.org/10.1007/s10955-016-1641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1641-6

Keywords

Navigation