Skip to main content

Scaling of Entanglement Entropy for the Heisenberg Model on Clusters Joined by Point Contacts

Possible Violation of the Area Law in Dimensions Greater than One


The scaling of entanglement entropy for the nearest neighbor antiferromagnetic Heisenberg spin model is studied computationally for clusters joined by a single bond. Bisecting the balanced three legged Bethe cluster, gives a second Renyi entropy and the valence bond entropy which scales as the number of sites in the cluster. For the analogous situation with square clusters, i.e. two \(L \times L\) clusters joined by a single bond, numerical results suggest that the second Renyi entropy and the valence bond entropy scales as L. For both systems, the environment and the system are connected by the single bond and interaction is short range. The entropy is not constant with system size as suggested by the area law.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  1. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373–383 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Plenio, M.B., Eisert, J., Dreissig, J., Cramer, M.: Entropy, entanglement, and area: analytical results for harmonic lattice systems. Phys. Rev. Lett. 94, 060503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  6. Latorre, J.I., Rico, E., Vidal, G.: Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48–92 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Latorre, J.I., Lütken, C.A., Rico, E., Vidal, G.: Fine-grained entanglement loss along renormalization-group flows. Phys. Rev. A 71, 034301–4p (2005)

    Article  ADS  Google Scholar 

  8. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech., P06002 (2004)

  9. Caravan, B., Friedman, B.A., Levine, G.C.: Scaling of entanglement entropy in point-contact, free-fermion systems. Phys. Rev. A 89, 052305–7p (2014)

    Article  ADS  Google Scholar 

  10. Song, H.F., Laflorencie, N., Rachel, S., LeHur, K.: Entanglement entropy of the two-dimensional Heisenberg antiferromagnet. Phys. Rev. B 83, 224410–7p (2011)

    Article  ADS  Google Scholar 

  11. Sandvik, A.W.: Ground state projection of quantum spin systems in the valence-bond basis. Phys. Rev. Lett. 95, 207203 (2005)

    Article  ADS  Google Scholar 

  12. Hastings, M.B., Gonzalez, I., Kallin, A.B., Melko, R.G.: Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. Phys. Rev. Lett. 104, 157201 (2010)

    Article  ADS  Google Scholar 

  13. Alet, F., Capponi, S., Laflorencie, N., Mambrini, M.: Valence bond entanglement entropy. Phys. Rev. Lett. 99, 117204 (2007)

    Article  ADS  Google Scholar 

  14. Chhajlany, R.W., Tomczak, P., Wojcik, A.: Topological estimator of block entanglement for Heisenberg antiferromagnets. Phys. Rev. Lett. 99, 167204 (2007)

    Article  ADS  Google Scholar 

  15. Chandran, A., Khemani, V., Sondhi, S.L.: How universal is the entanglement spectrum? Phys. Rev. Lett. 113, 060501 (2014)

    Article  ADS  Google Scholar 

  16. Lieb, E.H., Mattis, D.: Ordering of energy levels of interacting spin systems. J. Math. Phys. 3, 749–751 (1962)

    Article  ADS  MATH  Google Scholar 

  17. Liang, S., Doucot, B., Anderson, P.W.: Some new variational resonating-valence-bond-type wave functions for the spin- 1/2 antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. Lett. 61, 365–368 (1988)

    Article  ADS  Google Scholar 

  18. Levine, G.C., Miller, D.J.: Zero-dimensional area law in a gapless fermionic system. Phys. Rev. B 77, 205119 (2008)

    Article  ADS  Google Scholar 

  19. Kallin, A.B., Hastings, M.B., Melko, R.G., Singh, R.R.P.: Anomalies in the entanglement properties of the square-lattice Heisenberg model. Phys. Rev. B 84, 165134 (2011). arXiv:1107.2840v2

  20. Kumar, M., Ramasesha, S., Soos, Z.G.: Density matrix renormalization group algorithm for Bethe lattices of spin-1/2 or spin-1 sites with Heisenberg antiferromagnetic exchange. Phys. Rev. B 85, 134415 (2012)

    Article  ADS  Google Scholar 

  21. Changlani, H.J., Ghosh, S., Henley, C.L., Lauchli, A.M.: Heisenberg antiferromagnet on Cayley trees: low-energy spectrum and even/odd site imbalance. Phys. Rev. B 87, 085107 (2013)

    Article  ADS  Google Scholar 

  22. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bravyi, S., Caha, L., Movassagh, R., Nagaj, D., Schor, P.W.: Criticality without frustration for quantum spin-1 chains. Phys. Rev. Lett. 109, 207202 (2012)

    Article  ADS  Google Scholar 

  24. Movassagh, R., Schor, P.W.: Power law violation of the area law in quantum spin chains (2014). arXiv:1408.1657v2

  25. Aharonov, D., Harrow, A.W., Landau, Z., Nagaj, D., Szegedy, M., Vazirani, U.: Local tests of global entanglement and a counterexample to the generalized area law (2014). arXiv:1410.0951v1

  26. Hastings, M.B.: Random MERA states and the tightness of the Brandao-Horodecki entropy bound (2015). arXiv:1505.06468v1

  27. DeGennes, P.G., Hervet, H.J.: Statistics of<<starburst>> polymers. J. Phys. Lett. 44, 351–360 (1983)

    Article  Google Scholar 

  28. Kallin, A.B., Gonzalez, I., Hastings, M.B., Melko, R.G.: Valence bond and von Neumann entanglement entropy in Heisenberg ladders. Phys. Rev. Lett. 103, 117203 (2009)

    Article  ADS  Google Scholar 

  29. Islam, R., Ma, R., Preiss, P.M., Eric Tai, M., Lukin, A., Rispoli, M., Griener, M.: Measuring entanglement entropy through the interference of quantum many-body twins (2015). arXiv:1509.01160v1

  30. Marien, M., Audenaert, K.M.R., Acoleyen, K.V., Verstraete, F.: Entanglement rates and the stability of the area law for the entanglement entropy (2014). arXiv:1411.0680v1

  31. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  Google Scholar 

  32. Monroe, C., Schoelkopf, R.J., Lukin, M.D.: Quantum connections. Sci. Am. 314, 50–57 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to B. A. Friedman.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, B.A., Levine, G.C. Scaling of Entanglement Entropy for the Heisenberg Model on Clusters Joined by Point Contacts. J Stat Phys 165, 727–739 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: