Advertisement

Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 420–426 | Cite as

In Memory of Leo P. Kadanoff

  • Franz J. Wegner
Article
  • 272 Downloads

Abstract

Leo Kadanoff has worked in many fields of statistical mechanics. His contributions had an enormous impact. This holds in particular for critical phenomena, where he explained Widom’s homogeneity laws by means of block-spin transformations and laid the basis for Wilson’s renormalization group equation. I had the pleasure to work in his group for 1 year. A short historical account is given.

Keywords

Renormalization group Block-spin transformation Critical phenomena Ising model Duality 

References

  1. 1.
    Baxter, R.: Eight-Vertex Model in Lattice Statistics. Phys. Rev. Lett. 26, 832 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    Baxter, R.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baym, G.: Conservation laws and the quantum theory of transport:. the early days. In: Michael B. (ed.) Progress in Nonequilibrium Green’s Functions. Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-body Physics”. Rostock, Germany, 20–24 September 1999, pp. 17–32. World Scientific Publishing Co. Pte. Ltd. (2000)Google Scholar
  4. 4.
    Baym, G., Kadanoff, L.P.: Conservation laws and correlation functions. Phys. Rev. 124, 237 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Castaign, B., Gunaratne, G., Heslot, F., Kadanoff, L.P., Libchaber, A., Thomae, S., Wu, X.-Z., Zalewski, S., Zanetti, G.: Scaling of hard turbulence in Rayleigh Benard convection. J. Fluid Mech. 209, 1 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Chhabra, A.B., Feigenbaum, M.L., Kadanoff, L.P., Kolan, A.J., Procaccia, I.: Sandpiles, avalanches, and the statistical mechanics of nonequilibrium stationary states. Phys. Rev. B 47, 3099 (1993)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Creutz, M., Jacobs, L., Rebbi, C.: Experiments with a gauge-invariant Ising system. Phys. Rev. Lett. 42, 1390 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    Efrati, E., Wang, Z., Kolan, A., Kadanoff, L.P.: Real-space renormalization in statistical mechanics. Rev. Mod. Phys. 86, 647 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Fisher, M.E.: The theory of critical phenomena. Rep. Prog. Phys. 30, 615 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    Ginzburg, V.L.: Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials Fiz. Tverd. Tela, 2, 2031 (1960). Sov. Phys. Solid State 1, 1824 (1960)Google Scholar
  12. 12.
    Green, M.S., Vicentini-Missoni, M., Levelt-Sengers, J.M.H.: Scaling-law equation of state for gases in ther critical region. Phys. Rev. Lett. 18, 1113 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    Grover, M.K., Kadanoff, L.P., Wegner, F.J.: Critical exponents for the Heisenberg model. Phys. Rev. B 6, 311 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141 (1986). (Erratum Phys. Rev. A 34, 1601 E (1986))ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Heller, P.: Experimental investigations of critical phenomena. Rep. Prog. Phys. 30, 731 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Ho, J.T., Litster, J.D.: Magnetic equation of state of CrBr\(_3\) near the critical point. Phys. Rev. Lett. 22, 603 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    Höf, D., Wegner, F.: Calculation of anomalous dimensions for the nonlinear sigma model. Nucl. Phys. B 275, 561 (1986)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Jasnow, D., Wortis, M.: High temperature critical indices for the classical anisotropic Heisenberg model. Phys. Rev. 176, 739 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    Jensen, M.H., Kadanoff, L.P., Procaccia, I.: Scaling structure and thermodynamics of strange sets. Phys. Rev. A 36, 1409 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jose, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    Kadanoff, L.P.: Scaling laws for Ising models near \(T_c\). Physics 2, 263 (1966)Google Scholar
  22. 22.
    Kadanoff, L.P.: Spin-spin correlations in the two-dimensional Ising model. Nuovo Cim. 44, 276 (1966)ADSCrossRefGoogle Scholar
  23. 23.
    Kadanoff, L.P.: Operator algebra and the determination of critical indices. Phys. Rev. Lett. 23, 1430 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    Kadanoff, L.P.: Correlations along a line in the two-dimensional ising model. Phys. Rev. 188, 859 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    Kadanoff, L.P.: Variational principles and approximate renormalization group calculations. Phys. Rev. Lett. 34, 1005 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    Kadanoff, L.P.: Scaling, Universality, and Operator Algebras. In: Domb, C., Green, M.S. (eds.) Phase transitions and critical phenomena, vol. 5A, p. 1. Academic Press, New York (1976)Google Scholar
  27. 27.
    Kadanoff, L.P.: Notes on Migdal’s recursion formulas. Ann. Phys. 100, 359 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    Kadanoff, L.P.: Multicritical behavior at the Kosterlitz–Thouless critical point. Ann. Phys. 120, 39 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    Kadanoff, L.P.: Scaling for a critical Kolmogorov–Arnold–Moser (KAM) trajectory. Phys. Rev. Lett. 47, 1641 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kadanoff, L.P.: Critical behavior of a KAM Surface: II. Renormalization Approach. In: Kalia, R.K., Vashista, P. (eds.) Melting, Localization, and Chaos, North Holland, New York (1982)Google Scholar
  31. 31.
    Kadanoff, L.P.: Scaling and universality in statistical physics. Phys. A 163, 1 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kadanoff, L.P.: From Order to Chaos. World Scientific (1993)Google Scholar
  33. 33.
    Kadanoff, L.P.: Interview in the Physics of Scales project (2002). http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/renormalization/Kadanoff/index.htm
  34. 34.
    Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. W. A. Benjamin, New York (1962)zbMATHGoogle Scholar
  35. 35.
    Kadanoff, L.P., Ceva, H.: Determination of an operator algebra for the two-dimensional ising model. Phys. Rev. B 3, 3918 (1971)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Kadanoff, L.P., Götze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Palciauskas, V.V., Rayl, M., Swift, J., Aspnes, D., Kane, J.: Static phenomena near critical points: theory and experiment. Rev. Mod. Phys. 39, 395 (1967)ADSCrossRefGoogle Scholar
  37. 37.
    Kadanoff, L.P., Houghton, A.: Numerical evaluations of the critical properties of the two-dimensional ising model. Phys. Rev. B 11, 377 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    Kadanoff, L.P., Houghton, A., Yalabik, M.C.: Variational approximations for renormalization group transformations. J. Stat. Phys. 14, 171 (1976)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Kadanoff, L.P., Nagel, S.R., Wu, L., Zhoum, S.-M.: Scaling and Universality in Avalanches. Phys. Rev. A39, 6524 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    Kadanoff, L.P., Shenker, S.J.: Critical behavior of a KAM surface: I. empirical results. J. Stat. Phys. 27, 631 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kadanoff, L.P., Wegner, F.J.: Some critical properties of the eight-vertex model. Phys. Rev. B 4, 3989 (1971)ADSCrossRefGoogle Scholar
  42. 42.
    Kouvel, J.S., Comly, J.B.: Magnetic equation of state for Nickel near its Curie point. Phys. Rev. Lett. 20, 1237 (1968)ADSCrossRefGoogle Scholar
  43. 43.
    Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252 (1941)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Landau, L.D.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19 (1937) (reprinted in Collected Papers, (Nauka, Moscow, 1969) Vol. 1, 234)Google Scholar
  45. 45.
    Laramore, G.E.: A report on the midwinter solid-state research conference. J. Stat. Phys. 2, 107 (1970)CrossRefGoogle Scholar
  46. 46.
    Larkin, A.I., Khmelniskii, D.E.: Phase transitions in Uniaxial Ferroelectrics. Zh. Eksp, Teor, Fiz. 56, 2087 (1969) Sov. Phys. JETP 29, 1123 (1969)Google Scholar
  47. 47.
    Levelt-Sengers, J.M.H.: From Van der Waals’ equation to the scaling laws. Physica 73, 73 (1974)ADSCrossRefGoogle Scholar
  48. 48.
    Migdal, A.A.: Recursion equation in gauge field theories Zh. Eksp. Teor. Fiz. 69, 810 (1975). Sov. Phys. JETP 42, 413 (1976)ADSGoogle Scholar
  49. 49.
    Migdal, A.A.: Phase transitions in gauge and spin-lattice systems Zh. Eksp. Teor. Fiz. 69, 1457 (1975). Sov. Phys. JETP 42, 743 (1976)ADSGoogle Scholar
  50. 50.
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Riedel, E., Wegner, F.: Scaling approach to anisotropic magnetic systems, statics. Z. Physik 225, 195 (1969)ADSCrossRefGoogle Scholar
  52. 52.
    Schäfer, L., Wegner, F.: Disordered system with n orbitals per lattice site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes. Z. Phys. B 38, 113 (1980)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Shenker, S.J., Kadanoff, L.P., Pruisken, A.: A variational real space renormalization group transformation based on the cumulant expansion. J. Phys. A 12, 91 (1979)ADSCrossRefGoogle Scholar
  54. 54.
    Stanley, H.E.: Spherical model as the limit of infinite spin dimensionalily. Phys. Rev. 176, 718 (1968)ADSCrossRefGoogle Scholar
  55. 55.
    van der Waals, J.D.: On the continuity of the gas and liquid state, thesis (in Dutch), Leiden (1873)Google Scholar
  56. 56.
    Wegner, F.J.: Duality in generalized Ising models and phase transitions without local order parameter. J. Math. Phys. 12, 2259 (1971)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Wegner, F.J.: Corrections to scaling laws. Phys. Rev. B 5, 4529 (1972)ADSCrossRefGoogle Scholar
  58. 58.
    Wegner, F.J.: Critical exponents in isotropic spin systems. Phys. Rev. B 6, 1891 (1972)ADSCrossRefGoogle Scholar
  59. 59.
    Wegner, F.J.: The critical state, general aspects. In: Domb, C., Green, M. (eds.) Phase Transitions and Critical Phenomena, vol. 6, p. 7. Academic Press, New York (1976)Google Scholar
  60. 60.
    Wegner, F.J.: Electrons in disordered systems. Scaling near the mobility edge. Z. Phys. B25, 327 (1976)ADSGoogle Scholar
  61. 61.
    Wegner, F.: The mobility edge problem: continuous symmetry and a conjecture. Z. Phys. B 35, 207 (1979)ADSCrossRefGoogle Scholar
  62. 62.
    Wegner, F.: Inverse participation ratio in \(2+\varepsilon \) dimensions. Z. Phys. B 36, 209 (1980)Google Scholar
  63. 63.
    Wegner, F.: Anomalous dimensions for the nonlinear sigma-model in \(2+\epsilon \) dimensions. Nucl. Phys. B 280, 210 (1987)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Wegner, F.J., Houghton, A.: Feynman-graph calculation of the \((0, l)\) critical exponents to order \(\epsilon ^2\). Phys. Rev. A 10, 435 (1974)ADSCrossRefGoogle Scholar
  65. 65.
    Weiss, P.: L’hypothese du champ moléculaire et la propriété ferromagnétique. J. Phys. Theor. Appl. 6, 661 (1907)CrossRefzbMATHGoogle Scholar
  66. 66.
    Widom, B.: Equation of state in the neighborhood of the critical point. J. Chem. Phys 43, 3898 (1965)ADSCrossRefGoogle Scholar
  67. 67.
    Wilson, K.G.: Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174 (1971)ADSCrossRefzbMATHGoogle Scholar
  68. 68.
    Wilson, K.G.: Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4, 3184 (1971)ADSCrossRefzbMATHGoogle Scholar
  69. 69.
    Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10, 2445 (1974)ADSCrossRefGoogle Scholar
  70. 70.
    Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240 (1972)ADSCrossRefGoogle Scholar
  71. 71.
    Wilson, K.G., Kogut, J.: The renormalization group and the \(\varepsilon \) expansion. Phys. Rep. 12C, 75 (1974)Google Scholar
  72. 72.
    Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsRuprecht-Karls-UniversityHeidelbergGermany

Personalised recommendations