Advertisement

Journal of Statistical Physics

, Volume 165, Issue 2, pp 274–319 | Cite as

Crystalline Motion of Interfaces Between Patterns

  • Andrea Braides
  • Marco Cicalese
  • Nung Kwan Yip
Article

Abstract

We consider the dynamical problem of an antiferromagnetic spin system on a two-dimensional square lattice \(\varepsilon \mathbb {Z}^2\) with nearest-neighbour and next-to-nearest neighbour interactions. The key features of the model include the interaction between spatial scale \(\varepsilon \) and time scale \(\tau \), and the incorporation of interfacial boundaries separating regions with microstructures. By employing a discrete-time variational scheme, a limit continuous-time evolution is obtained for a crystal in \(\mathbb {R}^2\) which evolves according to some motion by crystalline curvatures. In the case of anti-phase boundaries between striped patterns, a striking phenomenon is the appearance of some “non-local” curvature dependence velocity law reflecting the creation of some defect structure on the interface at the discrete level.

Keywords

Antiferromagnetic spin system Anti-phase boundaries Microstructures Defects Interface motion Crystalline curvature motion 

Notes

Acknowledgments

The authors would like to thank the hospitality of the Institute for Mathematics and Its Applications (IMA), Minnesota, it was where this project started. The second author was supported by the DFG Collaborative Research Center TRR 109 Discretization in Geometry and Dynamics. The third author also appreciates the hosting by the Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata of his several visits which facilitated the completion of this project.

References

  1. 1.
    Alicandro, R., Braides, A., Cicalese, M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)CrossRefGoogle Scholar
  3. 3.
    Almgren, F., Taylor, J.E.: Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differ. Geom. 42, 1–22 (1995)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Almgren, F., Taylor, J.E., Wang, L.: Curvature driven flows: a variational approach. SIAM J. Control Optim. 50, 387–438 (1983)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH. Zürich. Birkhhäuser, Basel (2008)Google Scholar
  6. 6.
    Ansini, N., Braides, A., Chiadò Piat, V.: Gradient theory of phase transitions in composite media. Proc. Royal Soc. Edin 133A, 265–296 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braides, A.: \(\Gamma \)-convergence for Beginners. Oxford University Press, Oxford (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Braides, A.: Local Minimization, Variational Evolution and Gamma-Convergence. Lecture Notes in Mathematics, vol. 2094. Springer Verlag, Berlin (2014)Google Scholar
  9. 9.
    Braides, A., Cicalese, M.: Interfaces, modulated phases and textures in lattice systems (to appear in Arch. Ration. Mech. Anal)Google Scholar
  10. 10.
    Braides, A., Gelli, M.S., Novaga, M.: Motion and pinning of discrete interfaces. Arch. Ration. Mech. Anal. 95, 469–498 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Braides, A., Scilla, G.: Motion of discrete interfaces in periodic media. Interfaces Free Bound. 15, 451–476 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Braides, A., Solci, M.: Motion of discrete interfaces through mushy layers. J. Nonlinear Sci. 26, 1031–1053 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Caffarelli, L.A., de la Llave, R.: Interfaces of ground states in ising models with periodic coefficients. J. Stat. Phys. 118, 687–719 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cahn, J.W., Van Vleck, E.S.: Quadrijunctions do not stop two-dimensional grain growth. Scipta Mater. 34, 909–912 (1996)CrossRefGoogle Scholar
  15. 15.
    Cahn, J.W., Van Vleck, E.S.: On the co-existence and stability of trijunctions and quadrijunctions in a simple model. Acta Mater. 47(18), 4627–4639 (1999)CrossRefGoogle Scholar
  16. 16.
    Chen, X.: Generation and propagation of interfaces for reaction-diffusion equations. J. Diff. Equ. 96, 116–141 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    De Masi, A., Ferrai, P.A., Lebowitz, J.L.: Rigorous derivation of reaction-diffusion equations with fluctuations. Phys. Rev. Lett. 55(19), 1947–1949 (1985)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    De Masi, A., Ferrai, P.A., Presutti, E.: Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44(3/4), 589–644 (1986)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7(3), 633–696 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    de Mottoni, P., Schatzman, M.: Geometric evolution of developed interfaces. Trans. Am. Math. Soc. 347, 1533–1589 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87(1–2), 37–61 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58(6), 1707–1729 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Giuliani, A., Lieb, E.H., Seiringer, R.: Formation of stripes and slabs near the ferromagnetic transition. Commun. Math. Phys. 331, 333–350 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Giuliani, A., Seiringer, R.: Periodic striped ground states in Ising models with competing interactions. arXiv:1509.00057 (to appear in Comm. Math. Phys)
  26. 26.
    Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294–307 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38, 417–461 (1993)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Katsoulakis, M.K., Souganidis, P.E.: Interacting particle systems and generalized evolution of fronts. Arch. Ration. Mech. Anal. 127(2), 133–157 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Katsoulakis, M.K., Souganidis, P.E.: Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics. Commun. Math. Phys. 169(1), 61–97 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Katsoulakis, M.K., Souganidis, P.E.: Stochastic Ising models and anisotropic front propagation. J. Stat. Phys. 87(1–2), 63–89 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kawasaki, K.: Diffusion constant near the critical point for time-dependent ising models. I. Phys. Rev. 145(1), 224–230 (1966)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Kawasaki, K.: Diffusion constant near the critical point for time-dependent ising models. II. Phys. Rev. 148(1), 375–381 (1966)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Kinderlehrer, D., Liu, C.: Evolution of grain boundaries. Math. Models Methods Appl. Sci. 11, 713–729 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow. Calc. Var. 3, 253–271 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Magni, A., Mantegazza, C., Novaga, M.: Motion by curvature of planar networks II. Ann. Sc. Norm. Super. Pisa Cl. Sci. 15, 117–144 (2016)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Mantegazza, C., Novaga, M., Tortorelli, V.M.: Motion by curvature of planar networks. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3, 235–324 (2004)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101, 209–260 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Taylor, J.E.: Motion of curves by crystalline curvature, including triple junctions and boundary points. Proc. Symp. Pure Math. Differ. Geom. 51(part 1), 417–438 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Taylor, J.E., Cahn, J., Handwerker, C.: Geometric models of crystal growth. Acta Metall. Mater. 40, 1443–1474 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Taylor, J.E., Cahn, J., Handwerker, C.: Mean curvature and weighted mean curvature. Acta Metall. Mater. 40, 1475–1485 (1992)CrossRefGoogle Scholar
  43. 43.
    Taylor, J.E.: A variational approach to crystalline triple-junction motion. J. Stat. Phys. 95(5–6), 1221–1244 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversity of Rome Tor VergataRomeItaly
  2. 2.Zentrum MathematikTUMünichGermany
  3. 3.Department of MathemticsPurdue UniversityWest LafayetteUSA

Personalised recommendations