Journal of Statistical Physics

, Volume 166, Issue 3–4, pp 467–493 | Cite as

The Geometric Approach for Constructing Sinai–Ruelle–Bowen Measures

  • Vaughn Climenhaga
  • Stefano Luzzatto
  • Yakov PesinEmail author


An important class of ‘physically relevant’ measures for dynamical systems with hyperbolic behavior is given by Sinai–Ruelle–Bowen (SRB) measures. We survey various techniques for constructing SRB measures and studying their properties, paying special attention to the geometric ‘push-forward’ approach. After describing this approach in the uniformly hyperbolic setting, we review recent work that extends it to non-uniformly hyperbolic systems.


Non-uniform hyperbolicity Dominated splitting Attractor Physical measures SRB measures 



V.C. was partially supported by NSF Grant DMS-1362838. Ya.P. was partially supported by NSF Grant DMS-1400027. V.C. and Ya.P. would like to thank Erwin Schrödinger Institute and ICERM where the part of the work was done for their hospitality.


  1. 1.
    Afraimovich, V., Pesin, Ya.: The dimension of Lorenz type attractors. Sov. Math. Phys. Rev 6, 169–241 (1987)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Afraimovich, V., Bykov, V., Shilnikov, L.: On appearance and structure of Lorenz attractor. Dokl. Akad. Nauk USSR 234, 336–339 (1977)ADSGoogle Scholar
  3. 3.
    Alves, J.: SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. École Norm. Sup. (4) 33, 1–32 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alves, J., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140, 351–398 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alves, J., Dias, C., Luzzatto, S., Pinheiro, V.: SRB measures for partially hyperbolic systems whose central direction is weakly expanding. J. Eur. Math. Soc. (2016, to appear)Google Scholar
  6. 6.
    Bakhtin, V.: A direct method for constructing an invariant measure on a hyperbolic attractor. Izv. Ross. Akad. Nauk Ser. Mat. 56(5), 934–957 (1992) (English translation in Russian Acad. Sci. Izv. Math. 41(2), 207–227 (1993) Google Scholar
  7. 7.
    Baladi, V.: The quest for the ultimate anisotropic Banach space. Preprint (2016). arXiv:1607.00654
  8. 8.
    Barreira, L., Pesin, Ya.: Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Belykh, V.: Qualitative Methods of the Theory of Non-linear Oscillations in Point Systems. Gorki Universiy Press, Gorky (1980)zbMATHGoogle Scholar
  10. 10.
    Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Benedicks, M., Young, L.-S.: Sinai–Bowen–Ruelle measure for certain Hénon maps. Invent. Math. 112, 541–576 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Benedicks, M., Young, L.-S.: Markov extensions and decay of correlations for certain Hénon maps. Astérisque 261, 13–56 (2000)zbMATHGoogle Scholar
  13. 13.
    Blank, M., Keller, G., Liverani, C.: Ruelle–Perron–Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bunimovich, L., Sinai, Ya.: Stochasticity of the attractor in the Lorenz model. In: Nonlinear Waves (Proc. Winter School, Moscow), pp. 212–226. Nauka, Moscow (1980)Google Scholar
  15. 15.
    Burns, K., Dolgopyat, D., Pesin, Ya., Pollicott, M.: Stable ergodicity for partially hyperbolic attractors with negative central exponents. J. Mod. Dyn. 2(1), 1–19 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bonatti, C., Diaz, L.J.: Persistence of transitive diffeomorphisms. Ann. Math. 143, 367–396 (1995)Google Scholar
  17. 17.
    Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115, 157–193 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bonatti, C., Diaz, L.J., Ures, R.: Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms. J. Inst. Math. Jussieu 1(4), 513–541 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bonatti, C., Diaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. In: Mathematical Physics, III. Encyclopedia of Mathematical Sciences, 102. Springer, Berlin (2005)Google Scholar
  20. 20.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)Google Scholar
  21. 21.
    Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chernov, N.: Sinai billiards under small external forces. Ann. Inst. H. Poincaré 2, 197–236 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chernov, N., Dolgopyat, D.: Brownian Brownian Motion—I. Memoirs AMS 198(927), 193 pp (2009)Google Scholar
  24. 24.
    Chernov, N., Eyink, G., Lebowitz, J., Sinai, Ya.: Steady-state electrical conduction in the periodic Lorentz gas. Commun. Math. Phys. 154(3), 569–601 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Climenhaga, V., Katok, A.: Measure theory through dynamical eyes. Preprint (2012). arXiv:1208.4550
  26. 26.
    Climenhaga, V., Pesin, Ya.: Hadamard–Perron theorems and effective hyperbolicity. Exoplanet Transit Database 36(1), 23–63 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Climenhaga, V., Dolgopyat, D., Pesin, Ya.: Non-stationary non-uniform hyperbolicity: SRB measures for dissipative maps. Commun. Math. Phys. 346, 553 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Climenhaga, V., Luzzatto, S., Pesin, Ya.: Young towers for hyperbolic measures for surface diffeomorphisms. Preprint (2016)Google Scholar
  29. 29.
    Dobrushin, R.: Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Veroyatnoistei i Primenenia 13, 201–229 (1968) (English translation: Theory Probab. Appl. 13, 197–223) Google Scholar
  30. 30.
    Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. AMS 356, 1637–1689 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Dolgopyat, D., Viana, M., Yang, J.: Geometric and measure-theoretical structures of maps with mostly contracting center. Commun. Math. Phys. 341(3), 991–1014 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. ETDS 26(1), 189–217 (2006)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Guckenheimer, J., Williams, R.: Structural stability of the Lorenz attractors. Publ. Math. IHES 50, 59–72 (1980)CrossRefzbMATHGoogle Scholar
  34. 34.
    Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Springer Lecture Notes on Mathematics, vol. 583. Springer, Berlin (1977)Google Scholar
  35. 35.
    Kaneko, K.: Dominance of Milnor attractors in globally coupled dynamical systems with more than \(7\pm 2\) degrees of freedom. Phys. Rev. E 66, 055201 (2002)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Lanford, O., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Ledrappier, F.: Propriétés ergodiques des mesures de Sina i. Inst. Hautes Études Sci. Publ. Math. 59, 163–188 (1984)CrossRefzbMATHGoogle Scholar
  38. 38.
    Ledrappier, F., Strelcyn, J.-M.: A proof of the estimation from below in Pesin entropy formula. Ergod. Theory Dyn. Syst. 2, 203–219 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. Ann. Math. 122, 509–574 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Levy, Y.: Ergodic Properties of the Lozi Map. Springer Lecture Notes in Mathematics, vol. 1109, pp. 103–116. Springer, Berlin (1985)Google Scholar
  41. 41.
    Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Misiurewicz, M.: Strange attractors for the Lozi mappings. In: Helleman, R.G. (ed.) Nonlinear Dynamics, pp. 358–398. Academic Press, New York (1980)Google Scholar
  43. 43.
    Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surveys 32(4), 506–515 (1977)CrossRefzbMATHGoogle Scholar
  44. 44.
    Pesin, Ya., Sinai, Ya.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory Dyn. Syst. 2(3—-4), 417–438 (1982)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Pesin, Ya.: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Theory Dyn. Syst. 12(1), 123–151 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Pugh, C., Shub, M.: Stably ergodic dynamical systems and partial hyperbolicity. J. Complexity 13, 125–179 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rodriguez Hertz, F., Rodriguez Hertz, M.A., Tahzibi, A., Ures, R.: Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Commun. Math. Phys. 306(1), 35–49 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ruelle, D.: A measure associated with axiom-A attractors. Am. J. Math. 98(3), 619–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Rychlik, M.: Invariant measures and the variation principle for Lozi mappings. PhD Dissertation, University of California, Berkeley (1983)Google Scholar
  50. 50.
    Shub, M., Wilkinson, A.: Pathological foliations and removable zero exponents. Invent. Math. 139(3), 495–508 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Sinai, Ya.: Markov partitions and Y-diffeomorphisms. Funct. Anal. Appl. 2(1), 64–89 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sinai, Ya.: Gibbs measures in ergodic theory. Russ. Math. Surveys 27(4), 21–69 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sr. I Math. 328(12), 1197–1202 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Vásquez, C.: Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. J. Modern Dyn. 3(2), 233–251 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Viana, M.: Dynamics: a probabilistic and geometric perspective. In: Proceedings of the International Congress of Mathematicians, vol. 1, Berlin (1998)Google Scholar
  56. 56.
    Young, L.-S.: Bowen–Ruelle–Sinai measures for certain piecewise hyperbolic maps. Trans. AMS 287, 41–48 (1985)CrossRefzbMATHGoogle Scholar
  57. 57.
    Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5–6), 733–754 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Williams, R.: Structure of Lorenz Attractors. Springer Lecture Notes in Mathematics, vol. 675, pp. 94–112. Springer, Berlin (1977)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA
  2. 2.Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
  3. 3.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations