Journal of Statistical Physics

, Volume 164, Issue 4, pp 810–841 | Cite as

Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description

  • Alessandro ManacordaEmail author
  • Carlos A. Plata
  • Antonio Lasanta
  • Andrea Puglisi
  • Antonio Prados


A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.


Granular fluids Hydrodynamics Momentum conservation 



We acknowledge Pablo Maynar for really helpful discussions. C. A. P. acknowledges the support from the FPU Fellowship Programme of Spanish Ministerio de Educación, Cultura y Deporte through Grant FPU14/00241. C. A. P. and A. Prados acknowledge the support of the Spanish Ministerio de Economía y Competitividad through Grant FIS2014-53808-P.


  1. 1.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Puglisi, A.: Transport and fluctuations in granular fluids. Springer, Berlin (2014)Google Scholar
  3. 3.
    Brilliantov, N., Pöschel, T. (eds.): Kinetic Theory of Granular Gases. Oxford University Press (2004)Google Scholar
  4. 4.
    van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and the heated case. Gran. Matt. 1, 57 (1998)CrossRefGoogle Scholar
  5. 5.
    Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield. J. Fluid. Mech. 140, 223 (1984)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flow at low density. Phys. Rev. E 58(4), 4638 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Goldhirsch, I.: Scales and kinetics of granular. Chaos 9, 659 (1999)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Kadanoff, L.P.: Built upon sand: Theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71(1), 435–444 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    van Noije, T.P.C., Ernst, M.H.: Cahn-hilliard theory for unstable granular fluids. Phys. Rev. E 61, 1765 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Einstein, A.: Zur allgemeinen molekularen theorie der wärme. Ann. Phys. 319(7), 354–362 (1904)CrossRefzbMATHGoogle Scholar
  11. 11.
    Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91(6), 1505 (1953)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics 3rd edition Course of Theoretical Physics, vol. 5. Pergamon Press, Oxford (1980)Google Scholar
  13. 13.
    Brey, J.J., Maynar, P., de Soria, M.I.G.: Fluctuating hydrodynamics for dilute granular gases. Phys. Rev. E 79, 051305 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Fluctuations in stationary nonequilibrium states of irreversible processes. Phys. Rev. Lett. 87(4), 040601 (2001)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27(1), 65–74 (1982)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hurtado, P.I., Garrido, P.L.: Test of the additivity principle for current fluctuations in a model of heat conduction. Phys. Rev. Lett. 102(25), 250601 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Hurtado, P.I., Garrido, P.L.: Large fluctuations of the macroscopic current in diffusive systems: A numerical test of the additivity principle. Phys. Rev. E 81(4), 041102 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Hurtado, P.I., Garrido, P.L.: Current fluctuations and statistics during a large deviation event in an exactly solvable transport model. J. Stat. Mech. (Theor. Exp.) 2009(02), P02032 (2009)Google Scholar
  20. 20.
    Hurtado, P., Krapivsky, P.: Compact waves in microscopic nonlinear diffusion. Phys. Rev. E 85(6), 060103 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Srebro, Y., Levine, D.: Exactly solvable model for driven dissipative systems. Phys. Rev. Lett. 93, 240610 (2004)CrossRefGoogle Scholar
  22. 22.
    Prados, A., Lasanta, A., Hurtado, P.I.: Nonlinear driven diffusive systems with dissipation: Fluctuating hydrodynamics. Phys. Rev. E 86(3), 031134 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Prados, A., Lasanta, A., Hurtado, P.I.: Large fluctuations in driven dissipative media. Phys. Rev. Lett. 107(14), 140601 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Hurtado, P.I., Lasanta, A., Prados, A.: Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation. Phys. Rev. E 88(2), 022110 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Lasanta, A., Hurtado, P.I., Prados, A.: Statistics of the dissipated energy in driven diffusive systems. Eur. Phys. J. E 39(3), 35 (2016)CrossRefGoogle Scholar
  26. 26.
    Lasanta, A., Manacorda, A., Prados, A., Puglisi, A.: Fluctuating hydrodynamics and mesoscopic effects of spatial correlations in dissipative systems with conserved momentum. New J. Phys. 17, 083039 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A Math. Gen. 16, 4275 (1983)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Grinstein, G., Lee, D.-H., Sachdev, S.: Conservation laws, anisotropy, and self-organized criticality in noisy nonequilibrium systems. Phys. Rev. Lett. 64(16), 1927 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    Garrido, P.L., Lebowitz, J.L., Maes, C., Spohn, H.: Long-range correlations for conservative dynamics. Phys. Rev. A 42(4), 1954 (1990)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Kundu, A., Hirschberg, O., Mukamel, D.: Long range correlations in stochastic transport with energy and momentum conservationGoogle Scholar
  31. 31.
    Ramaswamy, S.: The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Kumar, N., Soni, H., Ramaswamy, S., Sood, A.K.: Flocking at a distance in active granular matter. Nat. Commun. 5, 4688 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Baskaran, A., Marchetti, M.C.: Enhanced diffusion and ordering of self-propelled rods. Phys. Rev. Lett. 101, 268101 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Marchetti, M., Joanny, J., Ramaswamy, S., Liverpool, T., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Chaté, H., Ginelli, F., Montagne, R.: Simple model for active nematics: Quasi-long-range order and giant fluctuations. Phys. Rev. Lett. 96, 180602 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Raymond, J.R., Evans, M.R.: Flocking regimes in a simple lattice model. Phys. Rev. E 73, 036112 (2006)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Simha, R.A., Ramaswamy, S.: Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Brey, J.J., Cubero, D.: Hydrodynamic transport coefficients of granular gases. In: Pöschel, T., Luding, S. (eds.) Granular Gas. Springer, Berlin (2001)Google Scholar
  39. 39.
    Pöschel, T., Luding, S. (eds.): Granular Gases. Lecture Notes in Physics vol. 564. Springer, Berlin (2001)Google Scholar
  40. 40.
    Haff, P.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Ernst, H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Brey, J.J., Ruiz-Montero, M., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54(4), 3664 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    Brey, J.J., Prados, A., de Soria, M.G., Maynar, P.: Scaling and aging in the homogeneous cooling state of a granular fluid of hard particles. J. Phys. A Math. Theor. 40(48), 14331 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Baldassarri, A., Marconi, U.M.B., Puglisi, A.: Influence of correlations on the velocity statistics of scalar granular gases. EPL (Europhysics Letters) 58(1), 14 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Ernst, M.H., Trizac, E., Barrat, A.: The rich behavior of the boltzmann equation for dissipative gases. Europhys. Lett. 76, 56 (2006)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17(1), 10–18 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    Prados, A., Brey, J.J., Sanchez-Rey, B.: A dynamical monte carlo algorithm for master equations with time-dependent transition rates. J. Stat. Phys. 89(3–4), 709–734 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kampen, N.G.V.: Stochastic Processes in Physics and Chemistry. Norht-Holland, Amsterdam (1992)zbMATHGoogle Scholar
  49. 49.
    Marconi, U.M.B., Puglisi, A., Vulpiani, A.: About an H-theorem for systems with non-conservative interactions. J. Stat. Mech. 2013, P08003 (2013)MathSciNetCrossRefGoogle Scholar
  50. 50.
    de Soria, M.I.G., Maynar, P., Mischler, S., Mouhot, C., Rey, T., Trizac, E.: Towards an h-theorem for granular gases. J. Stat. Mech. Theory Exp. 2015(11), P11009 (2015)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Plata, C. A., Manacorda, A., Lasanta, A., Puglisi, A., Prados, A.: Lattice models for granular-like velocity fields: finite size effects. arXiv:1606.09023
  52. 52.
    McNamara, S.: Hydrodynamic modes of a uniform granular medium. Phys. Fluids A 5, 3056 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    van Noije, T.P.C., Ernst, M.H., Brito, R., Orza, J.A.G.: Mesoscopic theory of granular fluids. Phys. Rev. Lett. 79, 411 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    García de Soria, M.I., Maynar, P., Schehr, G., Barrat, A., Trizac, E.: Dynamics of annihilation i. linearized boltzmann equation and hydrodynamics. Phys. Rev. E 77, 051127 (2008)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Lees, A.W., Edwards, S.F.: The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys. 5(15), 1921 (1972)ADSCrossRefGoogle Scholar
  56. 56.
    Santos, A., Garzó, V.: Simple shear flow in inelastic maxwell models. J. Stat. Mech. Theory Exp. 2007(08), P08021 (2007)CrossRefGoogle Scholar
  57. 57.
    Santos, A., Garzó, V., Dufty, J.W.: Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    Garzó, V.: Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis. Phys. Rev. E 73, 021304 (2006)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical physics II: Nonequilibrium stastical mechanics. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  60. 60.
    García de Soria, M.I., Maynar, P., Trizac, E.: Universal reference state in a driven homogeneous granular gas. Phys. Rev. E 85, 051301 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    García de Soria, M.I., Maynar, P., Trizac, E.: Linear hydrodynamics for driven granular gases. Phys. Rev. E 87, 022201 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Marconi, U.M.B., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep. 461, 111 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    Prados, A., Trizac, E.: Kovacs-like memory effect in driven granular gases. Phys. Rev. Lett. 112, 198001 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    Trizac, E., Prados, A.: Memory effect in uniformly heated granular gases. Phys. Rev. E 90, 012204 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alessandro Manacorda
    • 1
    Email author
  • Carlos A. Plata
    • 2
  • Antonio Lasanta
    • 3
  • Andrea Puglisi
    • 3
  • Antonio Prados
    • 2
  1. 1.Dipartimento di FisicaSapienza Università di RomaRomeItaly
  2. 2.Física TeóricaUniversidad de SevillaSevilleSpain
  3. 3.CNR-ISC and Dipartimento di FisicaSapienza Università di RomaRomeItaly

Personalised recommendations