Skip to main content
Log in

Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartolozzi, M., Drozdz, S., Leieber, D.B., Speth, J., Thomas, A.W.: Self-similar log-periodic structures in Western stock markets from 2000. Int. J. Mod. Phys. C. 16(9), 1347–1361 (2005)

    Article  ADS  Google Scholar 

  2. Borgnat, P., Flandrin, P., Amblard, P.O.: Stochastic discrete scale invariance. IEEE Signal Proc. Lett. 9(6), 182–184 (2002)

    Article  ADS  Google Scholar 

  3. Borgnat, P., Amblard, P.O., Flandrin, P.: Scale invariances and Lamperti transformations for stochastic processes. J. Phys. A, Math. Gen. 38(10), 2081–2101 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Burnecki, K., Maejima, M., Weron, A.: The Lamperti transformation for self-similar processes. Yokohama Math. J. 44, 25–42 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Cavanaugh, J.E., Wang, Y., Davis, J.W.: Locally Self-similar Processes and Their Wavelet Analysis. Stochastic Processes: Modelling and Simulation. Handbook of Statist, vol. 21, pp. 93–135. North-Holland, Amsterdam (2003)

    Book  MATH  Google Scholar 

  6. Coeurjolly, J.F.: Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4(2), 199–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flandrin, P., Gonalvs, P.: From Wavelets to Time-Scale Energy Distributions. Recent Advances in Wavelet Analysis, Wavelet Analysis Applications, vol. 3, pp. 309–334. Academic Press, Boston, MA (1994)

    Google Scholar 

  8. Goncalves, P., Abry, P.: Multiple-window wavelet transform and local scaling exponent estimation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Munich (1997)

  9. Goncalves, P., Flandrin, P.: Bilinear time scale analysis applied to local scaling exponent estimation. In: Meyer, Y., Roques, S. (eds.) Progress in Wavelet Analysis and Applications, pp. 271–276. University of Michigan, Ann Arbor (1992)

    Google Scholar 

  10. Hurd, H.L., Miamee, A.G.: Periodically Correlated Random Sequences: Spectral Theory and Practice. Wiley, Hoboken, NJ (2007)

    Book  MATH  Google Scholar 

  11. Johansen, A., Sornette, D., Ledoit, O.: Predicting financial crashes using discrete scale invariance. J. Risk 1(4), 5–32 (1999)

    Google Scholar 

  12. Johansen, A., Sornette, D., Ledoit, O.: Empirical and theoretical status of discrete scale invariance in financial crashes. J. Risk 1(4), 5–32 (1999)

    Google Scholar 

  13. Kent, J.T., Wood, A.T.A.: Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B. 59(3), 579–599 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Kwapień, J., Drożdż, S.: Physical approach to complex systems. Phys. Rep. 515, 115–226 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Modarresi N., Rezakhah S.: Characterization of discrete time scale invariant Markov process. Communn. Stat. doi:10.1080/03610926.2014.942427

  16. Modarresi, N. Rezakhah, S.: Discrete Time Scale Invariant Markov Processes. arXiv:0905.3959v3 (2009)

  17. Modarresi, N., Rezakhah, S.: Spectral analysis of multi-dimensional self-similar Markov processes. J. Phys. A-Math. Theor. 43(12), 125004 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Modarresi, N., Rezakhah, S.: A new structure for analyzing discrete scale invariant processes: covariance and spectra. J. Stat. Phys. 153(1), 162–176 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Modarresi, N., Rezakhah, S.: Certain periodically correlated multi-component locally stationary processe. Theory Probab. Appl. 59(2), 1–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sornette, D.: Discrete scale invariance and complex dimensions. Phys. Rep. 297(5), 239–270 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Stoev, S., Taqqu, M.S., Park, C., Michailidis, G., Marron, J.S.: LASS: a tool for the local analysis of self-similarity. Comput. Statist. Data Anal. 50(9), 2447–2471 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Y., Cavanaugh, J.E., Song, C.: Self-similarity index estimation via wavelets for locally self-similar processes. J. Stat. Plan. Infer. 99(1), 91–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, W.-X.Z., Sornette, D.: Renormalization group analysis of the 2000–2002 anti-bubble in the US S & P 500 index: explanation of the hierarchy of 5 crashes and prediction. Physica A 330, 584–604 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are highly appreciated of the valuable comments and suggestion of the reviewer which had significant effected in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Rezakhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezakhah, S., Maleki, Y. Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra. J Stat Phys 164, 438–448 (2016). https://doi.org/10.1007/s10955-016-1541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1541-9

Keywords

Mathematics Subject Classification

Navigation