Skip to main content
Log in

A Detailed Investigation into Near Degenerate Exponential Random Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The exponential family of random graphs has been a topic of continued research interest. Despite the relative simplicity, these models capture a variety of interesting features displayed by large-scale networks and allow us to better understand how phases transition between one another as tuning parameters vary. As the parameters cross certain lines, the model asymptotically transitions from a very sparse graph to a very dense graph, completely skipping all intermediate structures. We delve deeper into this near degenerate tendency and give an explicit characterization of the asymptotic graph structure as a function of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aldous, D.: Representations for partially exchangeable arrays of random variables. J. Multivar. Anal. 11, 581–598 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12, 1454–1508 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aristoff, D., Zhu, L.: On the phase transition curve in a directed exponential random graph model. arXiv:1404.6514 (2014)

  4. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6, 1–13 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bianconi, G.: Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)

    Article  ADS  Google Scholar 

  6. Borgs, C., Chayes, J., Cohn, H., Zhao, Y.: An \(L^p\) theory of sparse graph convergence I. Limits, sparse random graph models, and power law distributions. arXiv:1401.2906 (2014)

  7. Borgs, C., Chayes, J., Cohn, H., Zhao, Y.: An \(L^p\) theory of sparse graph convergence II. LD convergence, quotients, and right convergence. arXiv:1408.0744 (2014)

  8. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting graph homomorphisms. In: Klazar, M., Kratochvil, J., Loebl, M., Thomas, R., Valtr, P. (eds.) Topics in Discrete Mathematics, vol. 26, pp. 315–371. Springer, Berlin (2006)

    Chapter  Google Scholar 

  9. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of dense graphs I. Subgraph frequencies, metric properties and testing. Adv. Math. 219, 1801–1851 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. Math. 176, 151–219 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chatterjee, S., Diaconis, P.: Estimating and understanding exponential random graph models. Ann. Stat. 41, 2428–2461 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chatterjee, S., Dembo, A.: Nonlinear large deviations. arXiv:1401.3495 (2014)

  13. Chatterjee, S., Varadhan, S.R.S.: The large deviation principle for the Erdős-Rényi random graph. Eur. J. Comb. 32, 1000–1017 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Häggström, O., Jonasson, J.: Phase transition in the random triangle model. J. Appl. Probab. 36, 1101–1115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoover, D.: Row-column exchangeability and a generalized model for probability. In: Koch, G., Spizzichino, F. (eds.) Exchangeability in Probability and Statistics, pp. 281–291. North-Holland, Amsterdam (1982)

    Google Scholar 

  16. Kenyon, R., Radin, C., Ren K., Sadun, L.: Multipodal structure and phase transitions in large constrained graphs. arXiv:1405.0599 (2014)

  17. Lovász, L.: Large Networks and Graph Limits. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  18. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory Ser. B 96, 933–957 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lubetzky, E., Zhao, Y.: On the variational problem for upper tails in sparse random graphs. arXiv:1402.6011 (2014)

  20. Lubetzky, E., Zhao, Y.: On replica symmetry of large deviations in random graphs. Random Struct. Algorithms 47, 109–146 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Park, J., Newman, M.: Solution for the properties of a clustered network. Phys. Rev. E 72, 026136 (2005)

    Article  ADS  Google Scholar 

  22. Radin, C., Sadun, L.: Phase transitions in a complex network. J. Phys. A 46, 305002 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Radin, C., Sadun, L.: Singularities in the entropy of asymptotically large simple graphs. J. Stat. Phys. 158, 853–865 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Radin, C., Yin, M.: Phase transitions in exponential random graphs. Ann. Appl. Probab. 23, 2458–2471 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yin, M.: Critical phenomena in exponential random graphs. J. Stat. Phys. 153, 1008–1021 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Yin, M., Rinaldo, A., Fadnavis, S.: Asymptotic quantization of exponential random graphs. arXiv:1311.1738 (2013)

  27. Yin, M., Zhu, L.: Asymptotics for sparse exponential random graph models. arXiv:1411.4722 (2014)

Download references

Acknowledgments

The author is very grateful to the anonymous referees for the invaluable suggestions that greatly improved the quality of this paper. She appreciated the opportunity to talk about this work in the Special Session on Topics in Probability at the 2016 AMS Western Spring Sectional Meeting, organized by Tom Alberts and Arjun Krishnan. Mei Yin’s research was partially supported by NSF Grant DMS-1308333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M. A Detailed Investigation into Near Degenerate Exponential Random Graphs. J Stat Phys 164, 241–253 (2016). https://doi.org/10.1007/s10955-016-1539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1539-3

Keywords

Navigation