Skip to main content
Log in

Analysis of Reflected Diffusions via an Exponential Time-Based Transformation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let X(t) be a time-homogeneous diffusion process with state-space \([0,+\infty )\), where 0 is a reflecting or entrance endpoint, and let Z denote a random variable that describes the process X(t) evaluated at an exponentially distributed random time. We propose a method to obtain closed-form expressions for the conditional density and the mean of a new diffusion process Y(t), with the same state-space and with the same infinitesimal variance, whose drift depends on the infinitesimal moments of X(t) and on the hazard rate function of Z. This method also allows us to obtain the Laplace transform of the first-passage-time density of Y(t) through a lower constant boundary. We then discuss the relation between Y(t) and the process X(t) subject to catastrophes, as well as the interpretation of Y(t) as a diffusion in a decreasing potential. We study in detail some special cases concerning diffusion processes obtained when X(t) is the Wiener, Ornstein–Uhlenbeck, Bessel and Rayleigh process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992)

    MATH  Google Scholar 

  2. Abundo, M.: On some properties of one-dimensional diffusion processes on an interval. Probab. Math. Stat. 17, 277–310 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Araujo, M.T., Drigo Filho, E.: A general solution of the Fokker-Planck equation. J. Stat. Phys. 146, 610–619 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bluman, G.W.: On the transformation of diffusion processes into the Wiener process. SIAM J. Appl. Math. 39, 238–247 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bluman, G., Shtelen, V.: Nonlocal transformations of Kolmogorov equations into the backward heat equation. J. Math. Anal. Appl. 291, 419–437 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borodin, A.N.: Transformation of diffusion with jumps. J. Math. Sci. 152, 840–852 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buonocore, A., Caputo, L., Nobile, A.G., Pirozzi, E.: On some time-non-homogeneous linear diffusion processes and related bridges. Sci. Math. Jpn. 76, 55–77 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Buonocore, A., Caputo, L., Nobile, A.G., Pirozzi, E.: Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals. J. Comput. Appl. Math. 285, 59–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Capocelli, R.M., Ricciardi, L.M.: On the transformation of diffusion processes into the Feller process. Math. Biosci. 29, 219–234 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cherkasov, I.D.: On the transformation of the diffusion process to a Wiener process. Theory Probab. Appl. 2, 373–377 (1957)

    Article  MATH  Google Scholar 

  11. Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Wiley, New York (1965)

    MATH  Google Scholar 

  12. Di Crescenzo, A., Giorno, V., Krishna Kumar, B., Nobile, A.G.: A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation. Methodol. Comput. Appl. Probab. 14, 937–954 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Crescenzo, A., Giorno, V., Nobile, A.G., Ricciardi, L.M.: On the M/M/1 queue with catastrophes and its continuous approximation. Queueing Syst. 43, 329–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Crescenzo, A., Giorno, V., Nobile, A.G.: Constructing transient birth-death processes by means of suitable transformations. Appl. Math. Comput. 281, 152–171 (2016). doi:10.1016/j.amc.2016.01.058

    MathSciNet  Google Scholar 

  15. Ditlevsen, S.: A result on the first-passage time of an Ornstein-Uhlenbeck process. Stat. Probab. Lett. 77, 1744–1749 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. Based on Notes Left by Harry Bateman. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  17. Evans, M.R., Majumdar, S.N.: Diffusion with stochastic resetting. Phys. Rev. Lett. 106, 160601 (2011)

    Article  ADS  Google Scholar 

  18. Evans, M.R., Majumdar, S.N.: Diffusion with optimal resetting. J. Phys. A Math. Theor. 44, 435001 (2011)

    Article  ADS  MATH  Google Scholar 

  19. Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 77, 1–31 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  21. Forman, J.L., Sørensen, M.: A transformation approach to modelling multi-modal diffusions. J. Stat. Plan. Inference 146, 56–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frydman, H.: Gaussian diffusions and continuous state branching processes with killing. Commun. Stat. Stoch. Mod. 16, 189–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gardiner, C.W.: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  24. Giorno, V., Nobile, A.G., di Cesare, R.: On the reflected Ornstein-Uhlenbeck process with catastrophes. Appl. Math. Comput. 218, 11570–11582 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Giorno, V., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: On the construction of first-passage-time densities for diffusion processes. Sci. Math. Jpn. 64, 277–298 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Giorno, V., Nobile, A.G., Ricciardi, L.M.: A new approach to the construction of first-passage-time densities. In: Trappl, R. (ed.) Cybernetics and Systems’ 88, pp. 375–381. Kluwer, Vienna (1988)

    Google Scholar 

  27. Giorno, V., Nobile, A.G., Ricciardi, L.M., Sacerdote, L.: Some remarks on the Rayleigh process. J. Appl. Probab. 23, 398–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times of diffusion processes. Methodol. Comput. Appl. Probab. 3, 215–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golding, I., Kozlovsky, Y., Cohen, I., Ben-Jacob, E.: Studies of bacterial branching growth using reaction-diffusion models for colonial development. Physica A 260, 510–554 (1998)

    Article  ADS  Google Scholar 

  30. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals Series and Products. Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  31. Harrison, M.: Brownian Motion and Stochastic Flow Systems. John Wiley, New York (1985)

    MATH  Google Scholar 

  32. Hongler, M.O., Zheng, W.M.: Exact solution for the diffusion in bistable potentials. J. Stat. Phys. 29, 317–327 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Hongler, M.O., Zheng, W.M.: Exact results for the diffusion in a class of asymmetric bistable potentials. J. Math. Phys. 24, 336–340 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  34. Inoue, J., Sato, S., Ricciardi, L.M.: A note on the moments of the first-passage time of the Ornstein-Uhlenbeck process with a reflecting boundary. Ric. Mat. 46, 87–99 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)

    MATH  Google Scholar 

  36. Kushner, H.J.: Heavy Traffic Analysis of Controlled Queueing and Communication Networks. Applications of Mathematics, Vol. 47. Stochastic Modelling and Applied Probability. Springer, New York (2001)

    Book  MATH  Google Scholar 

  37. Kwok, S.F.: Langevin equation with multiplicative white noise: transformation of diffusion processes into the Wiener process in different prescriptions. Ann. Phys. 327, 1989–1997 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Linetski, V.: On the transition densities for reflected diffusions. Adv. Appl. Probab. 37, 435–460 (2005)

    Article  MathSciNet  Google Scholar 

  39. Molini, A., Talkner, P., Katul, G.G., Porporato, A.: First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Physica A 390, 1841–1852 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Pal, A.: Diffusion in a potential landscape with stochastic resetting. Phys. Rev. E 91, 012113 (2015)

    Article  ADS  Google Scholar 

  41. Ricciardi, L.M.: On the transformation of diffusion processes into the Wiener process. J. Math. Anal. Appl. 54, 185–199 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ricciardi, L.M., Sacerdote, L.: On the probability densities of an Ornstein-Uhlenbeck process with a reflecting boundary. J. Appl. Probab. 24, 355–369 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sacerdote, L., Ricciardi, L.M.: On the transformation of diffusion equations and boundaries into the Kolmogorov equation for the Wiener process. Ric. Mat. 41, 123–135 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer Series in Statistics. Springer, New York (2007)

    Book  Google Scholar 

  45. Taillefumier, T., Magnasco, M.: A fast algorithm for the first-passage times of Gauss-Markov processes with Hölder continuous boundaries. J. Stat. Phys. 140, 1130–1156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ward, A.R., Glynn, P.W.: Properties of the reflected Ornstein-Uhlenbeck process. Queueing Syst. 44, 109–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ward, A.R., Glynn, P.W.: A diffusion approximation for a \(GI/GI/1\) queue with balking or reneging. Queueing Syst. 50, 371–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wong, E.: The construction of a class of stationary Markoff processes. In: Bellman, R. (ed.) Stochastic Processes in Mathematical Physics and Engineering, pp. 264–276. American Mathematical Society, Providence (1964)

    Chapter  Google Scholar 

  49. Wonho, H.: Applications of the reflected Ornstein-Uhlenbeck process (Doctoral dissertation), University of Pittsburgh (2009)

Download references

Acknowledgments

The authors thank two anonymous referees for useful remarks and suggestions that improved the paper. Paper partially supported by GNCS-INdAM and Regione Campania (Legge 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Crescenzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Crescenzo, A., Giorno, V. & Nobile, A.G. Analysis of Reflected Diffusions via an Exponential Time-Based Transformation. J Stat Phys 163, 1425–1453 (2016). https://doi.org/10.1007/s10955-016-1525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1525-9

Keywords

Mathematics Subject Classification

Navigation