Skip to main content
Log in

The Quenched Critical Point for Self-Avoiding Walk on Random Conductors

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Following similar analysis to that in Lacoin (Probab Theory Relat Fields 159: 777–808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on \(\mathbb {Z}^d\) is almost surely a constant, which does not depend on the location of the reference point. We provide upper and lower bounds which are valid for all \(d\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. One of two anonymous referees found the following much simpler proof of (2.12). First, by the trivial inequality \(|{\hat{\Omega }}^{\scriptscriptstyle \mathsf {good}}_{\delta ,\varvec{X}}(x;n)|\le c(n)\), we obtain

    $$\begin{aligned} \mathbb {E}\big [|{\hat{\Omega }}^{\scriptscriptstyle \mathsf {good}}_{\delta ,\varvec{X}}(x;n)|\big ]&\le \frac{1}{2}c(n)\,\mathbb {P}\big (|{\hat{\Omega }}^{\scriptscriptstyle \mathsf {good}}_{\delta ,\varvec{X}}(x;n)|<\tfrac{1}{2}c(n)\big ) +c(n)\,\mathbb {P}\big (|{\hat{\Omega }}^{\scriptscriptstyle \mathsf {good}}_{\delta ,\varvec{X}}(x;n)|\ge \tfrac{1}{2}c(n)\big )\nonumber \\&=\frac{1}{2}c(n)\Big (1+\mathbb {P}\big (|{\hat{\Omega }}^{\scriptscriptstyle \mathsf {good}}_{\delta ,\varvec{X}}(x;n)|\ge \tfrac{1}{2}c(n)\big )\Big ). \end{aligned}$$
    (2.11)

    Combining this with (2.10), we can readily conclude \(\mathbb {P}\big (|{\hat{\Omega }}^{\scriptscriptstyle \mathsf {good}}_{\delta ,\varvec{X}}(x;n)|\ge \tfrac{1}{2}c(n)\big )\ge 1-o(1)\).

References

  1. Berger, Q., Toninelli, F.L.: On the critical point of the random walk pinning model in dimension \(d=3\). Electron. J. Probab. 15, 654–683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berkner, M., Sun, R.: Annealed versus quenched critical points for a random walk pinning model. Ann. Inst. H. Poincaré Probab. Stat. 46, 424–441 (2010)

    ADS  Google Scholar 

  3. Brydges, D., Spencer, T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chakrabarti, B.K., Kertész, J.: The statistics of self-avoiding walks on a disordered lattice. Z. Phys. B Condens. Matter 44, 221–223 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chakrabarti, B.K., Roy, A.K.: Statictics of self-avoiding walks on random lattices. Z. Phys. B Condens. Matter. 55, 131–136 (1984)

    Article  ADS  Google Scholar 

  6. Comets, F., Yoshida, N., Shiga, T.: Probabilistic analysis of directed polymers in a random environment: a review. Adv. Stud. Pure Math. 39, 115–142 (2004)

    MathSciNet  MATH  Google Scholar 

  7. den Hollander, F.: Random Polymers. Lecture Notes in Mathematics 1974. Springer, Berlin (2009)

  8. Le Doussal, P., Machta, J.: Self-avoiding walks in quenched random environments. J. Stat. Phys. 64, 541–578 (1991)

    Article  ADS  MATH  Google Scholar 

  9. Flory, P.J.: The configuration of a real polymer chain. J. Chem. Phys. 17, 303–310 (1949)

    Article  ADS  Google Scholar 

  10. Flory, P.J.: Principles of Polymer Chemistry. Cornell Univ. Press, New York (1953)

    Google Scholar 

  11. Fukushima, R., Yoshida, N.: On the exponential growth for a certain class of linear systems. Lat. Am. J. Probab. Math. Stat. 9, 323–336 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Giacomin, G.: Random Polymer Models. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  13. Harris, A.B.: Self-avoiding walks on random lattices. Z. Phys. B Condens. Matter 49, 347–349 (1983)

    Article  ADS  Google Scholar 

  14. Johnson, T., Waymire, E.C.: Tree polymers in the infinite volume limit at critical strong disorder. J. Appl. Probab. 48, 885–891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lacoin, H.: Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster. J. Stat. Phys. 154, 1461–1482 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lacoin, H.: Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster. Probab. Theory Relat. Fields 159, 777–808 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston (2013)

    Book  MATH  Google Scholar 

  18. Meir, Y., Harris, A.B.: Self-avoiding walks on diluted networks. Phys. Rev. Lett. 63, 2819–2822 (1989)

    Article  ADS  Google Scholar 

  19. Paley, R.E.A.C., Wiener, N., Zygmund, A.: Notes on random functions. Math. Zeitschrift 37, 647–668 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sinai, Y.G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256–268 (1983)

    Article  Google Scholar 

  21. Slade, G.: The self-avoiding walk: a brief survey. In: Blath, J. (ed.) Surveys in Stochastic Processes, pp. 181–199. European Mathematical Society, Zurich (2011)

    Chapter  Google Scholar 

  22. Smith, W.L., Wilkinson, W.E.: On branching processes in random environments. Ann. Math. Stat. 40, 814–827 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yilmaz, A., Zeitouni, O.: Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three. Commun. Math. Phys. 300, 243–271 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted to two anonymous referees for their constructive comments and numerous suggestions to improve presentation. We would also like to thank Rongfeng Sun for many valuable suggestions, Hubert Lacoin for clarifying some of the details in his paper [16] and Hugo Duminil-Copin for pointing out typos in a previous version of the manuscript. The first-named author gave a talk at the IMS workshop held in Singapore during May 4–15, 2015, and received inspiring feedback from participants. Finally we are grateful to Satoshi Handa and Dai Kawahara for their continual involvement in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Chino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chino, Y., Sakai, A. The Quenched Critical Point for Self-Avoiding Walk on Random Conductors. J Stat Phys 163, 754–764 (2016). https://doi.org/10.1007/s10955-016-1477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1477-0

Keywords

Navigation