Skip to main content
Log in

Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give a common description of Simon, Barabási–Albert, II-PA and Price growth models, by introducing suitable random graph processes with preferential attachment mechanisms. Through the II-PA model, we prove the conditions for which the asymptotic degree distribution of the Barabási–Albert model coincides with the asymptotic in-degree distribution of the Simon model. Furthermore, we show that when the number of vertices in the Simon model (with parameter \(\alpha \)) goes to infinity, a portion of them behave as a Yule model with parameters \((\lambda ,\beta ) = (1-\alpha ,1)\), and through this relation we explain why asymptotic properties of a random vertex in Simon model, coincide with the asymptotic properties of a random genus in Yule model. As a by-product of our analysis, we prove the explicit expression of the in-degree distribution for the II-PA model, given without proof in Newman (Contemp Phys 46:323-351, 2005). References to traditional and recent applications of the these models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  3. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bornholdt, S., Ebel, H.: World Wide Web scaling exponent from Simon’s 1955 model. Phys. Rev. E 64, 035104 (2001)

    Article  ADS  Google Scholar 

  5. Cooper, C., Frieze, A.: A general model of web graphs. Random Struct. Algorithms 22(3), 311–335 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crump, K.S.: On point processes having an order statistic structure. Sankhya Ser. A 37(3), 396–404 (1975)

    MathSciNet  MATH  Google Scholar 

  7. de Solla, D.J.: Price: Networks of scientific papers. Science 149, 510–515 (1965)

    Article  ADS  Google Scholar 

  8. de Solla, D.J.: Price: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inform. Sci. 27, 292–306 (1976)

    Article  Google Scholar 

  9. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000)

    Article  ADS  Google Scholar 

  10. Durrett, R.: Random Graph Dynamics. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  11. Feigin, P.D.: On the characterization of point processes with the order statistic property. J. Appl. Probab. 16(2), 297–304 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2011)

    MATH  Google Scholar 

  13. Lansky, P., Polito, F., Sacerdote, L.: The role of detachment of in-links in scale-free networks. J. Phys. A 47(34), 345002 (2014)

    Article  MATH  Google Scholar 

  14. Neuts, M., Resnick, S.I.: On the times of birth in a linear birth process. J. Aust. Math. Soc. 12, 473–475 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  ADS  Google Scholar 

  17. Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient (2012). arXiv:1205.3015

  18. Puri, P.S.: On the characterization of point processes with the order statistic property without the moment condition Sankhya. J. Appl. Probab. 19(1), 39–51 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sedgewick, R.: An introduction to the analysis of algorithms. Addison-Wesley, Reading (2013)

    Google Scholar 

  20. Simkin, M.V., Roychowdhury, V.P.: Re-inventing willis. Phys. Rep. 502(1), 1–35 (2011)

    ADS  MathSciNet  Google Scholar 

  21. Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3–4), 425–440 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thompson, E.A.: Human Evolutionary Trees. Cambridge University Press, New York (1975)

    Google Scholar 

  23. van derHofstad, R.: Random Graphs and Complex Networks, Volume I. http://www.win.tue.nl/rhofstad/NotesRGCN.pdf (2014)

  24. Yule, G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. B 213(402–410), 21–87 (1925)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Pachon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachon, A., Polito, F. & Sacerdote, L. Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models. J Stat Phys 162, 1608–1638 (2016). https://doi.org/10.1007/s10955-016-1462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1462-7

Keywords

Mathematics Subject Classification

Navigation