Journal of Statistical Physics

, Volume 162, Issue 6, pp 1608–1638 | Cite as

Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models

  • Angelica Pachon
  • Federico Polito
  • Laura Sacerdote


We give a common description of Simon, Barabási–Albert, II-PA and Price growth models, by introducing suitable random graph processes with preferential attachment mechanisms. Through the II-PA model, we prove the conditions for which the asymptotic degree distribution of the Barabási–Albert model coincides with the asymptotic in-degree distribution of the Simon model. Furthermore, we show that when the number of vertices in the Simon model (with parameter \(\alpha \)) goes to infinity, a portion of them behave as a Yule model with parameters \((\lambda ,\beta ) = (1-\alpha ,1)\), and through this relation we explain why asymptotic properties of a random vertex in Simon model, coincide with the asymptotic properties of a random genus in Yule model. As a by-product of our analysis, we prove the explicit expression of the in-degree distribution for the II-PA model, given without proof in Newman (Contemp Phys 46:323-351, 2005). References to traditional and recent applications of the these models are also discussed.


Preferential attachment Random graph growth Discrete and continuous time models Stochastic processes 

Mathematics Subject Classification

05C80 60G55 90B15 


  1. 1.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  3. 3.
    Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bornholdt, S., Ebel, H.: World Wide Web scaling exponent from Simon’s 1955 model. Phys. Rev. E 64, 035104 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Cooper, C., Frieze, A.: A general model of web graphs. Random Struct. Algorithms 22(3), 311–335 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Crump, K.S.: On point processes having an order statistic structure. Sankhya Ser. A 37(3), 396–404 (1975)MathSciNetzbMATHGoogle Scholar
  7. 7.
    de Solla, D.J.: Price: Networks of scientific papers. Science 149, 510–515 (1965)CrossRefADSGoogle Scholar
  8. 8.
    de Solla, D.J.: Price: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inform. Sci. 27, 292–306 (1976)CrossRefGoogle Scholar
  9. 9.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Durrett, R.: Random Graph Dynamics. Cambridge University Press, New York (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Feigin, P.D.: On the characterization of point processes with the order statistic property. J. Appl. Probab. 16(2), 297–304 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2011)zbMATHGoogle Scholar
  13. 13.
    Lansky, P., Polito, F., Sacerdote, L.: The role of detachment of in-links in scale-free networks. J. Phys. A 47(34), 345002 (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Neuts, M., Resnick, S.I.: On the times of birth in a linear birth process. J. Aust. Math. Soc. 12, 473–475 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient (2012). arXiv:1205.3015
  18. 18.
    Puri, P.S.: On the characterization of point processes with the order statistic property without the moment condition Sankhya. J. Appl. Probab. 19(1), 39–51 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Sedgewick, R.: An introduction to the analysis of algorithms. Addison-Wesley, Reading (2013)Google Scholar
  20. 20.
    Simkin, M.V., Roychowdhury, V.P.: Re-inventing willis. Phys. Rep. 502(1), 1–35 (2011)ADSMathSciNetGoogle Scholar
  21. 21.
    Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3–4), 425–440 (1955)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Thompson, E.A.: Human Evolutionary Trees. Cambridge University Press, New York (1975)Google Scholar
  23. 23.
    van derHofstad, R.: Random Graphs and Complex Networks, Volume I. (2014)
  24. 24.
    Yule, G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. B 213(402–410), 21–87 (1925)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Angelica Pachon
    • 1
  • Federico Polito
    • 1
  • Laura Sacerdote
    • 1
  1. 1.Mathematics Department “G. Peano”University of TorinoTurinItaly

Personalised recommendations