Skip to main content

Biological Implications of Dynamical Phases in Non-equilibrium Networks

Abstract

Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Qian, H.: Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys, Chem (2007). doi:10.1146/annurev.physchem.58.032806.104550

  2. Hopfield, J.J.: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71(10), 4135 (1974)

    Article  ADS  Google Scholar 

  3. Hopfield, J.J.: The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc. Natl. Acad. Sci. USA 77(9), 5248 (1980)

    Article  ADS  Google Scholar 

  4. Ninio, J.: Kinetic amplification of enzyme discrimination. Biochimie 57(5), 587–595 (1975)

    Article  Google Scholar 

  5. Yuhai, T.: Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Ann. Rev. Biophys. 42, 337–359 (2013)

    Article  Google Scholar 

  6. Mehta, P., Schwab, D.J.: Energetic costs of cellular computation. Proc. Natl. Acad. Sci. USA 109(44), 17978–17982 (2012)

    Article  ADS  Google Scholar 

  7. Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod, Phys (1976). doi:10.1103/RevModPhys.48.571

  8. Yuhai, T.: The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons. Proc. Natl. Acad. Sci. USA 105(33), 11737–11741 (2008)

    Article  Google Scholar 

  9. Bialek, W., Setayeshgar, S.: Physical limits to biochemical signaling. Proc. Natl. Acad. Sci. USA 102(29), 10040–10045 (2005)

    Article  ADS  Google Scholar 

  10. Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20(2), 193 (1977)

    Article  ADS  Google Scholar 

  11. Hartich, D., Barato, A.C., Seifert, U.: Nonequilibrium sensing and its analogy to kinetic proofreading. arXiv (2015). doi:10.1088/1367-2630/17/5/055026

  12. Murugan, A., Huse, D.A., Leibler, S.: Discriminatory proofreading regimes in nonequilibrium systems. Phys. Rev. X 4(2), 021016 (2014)

    Google Scholar 

  13. Lan, G., Sartori, P., Neumann, S., Sourjik, V.: Yuhai, Tu: The energy-speed-accuracy trade-off in sensory adaptation. Nat. Phys. 8(5), 422–428 (2012)

    Article  Google Scholar 

  14. Sartori, P., Pigolotti, S.: Kinetic versus energetic discrimination in biological copying. Phys. Rev. Lett. 110(18), 188101 (2013)

    Article  ADS  Google Scholar 

  15. Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48(4), 571–585 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ehrenberg, M., Blomberg, C.: Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J. 31(3), 333–358 (1980)

    Article  ADS  Google Scholar 

  17. Hlavacek, W.S., Redondo, A., Metzger, H., Wofsy, C., Goldstein, B.: Kinetic proofreading models for cell signaling predict ways to escape kinetic proofreading. Proc. Natl. Acad. Sci. USA 98(13), 7295–7300 (2001)

    Article  ADS  Google Scholar 

  18. McKeithan, T.W.: Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92(11), 5042 (1995)

    Article  ADS  Google Scholar 

  19. Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4(6), 445–456 (2004)

    Article  Google Scholar 

  20. François, P., Voisinne, G., Siggia, E.D., Altan-Bonnet, G., Vergassola, M.: Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. Proc. Natl. Acad. Sci. USA 110(10), E888–E897 (2013)

    Article  ADS  Google Scholar 

  21. Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S., Puglisi, J.D.: tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11(10), 1008–1014 (2004)

    Article  Google Scholar 

  22. Johansson, M., Lovmar, M., Ehrenberg, M.: Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 11(2), 141–147 (2008)

    Article  Google Scholar 

  23. Bar-Ziv, R., Tlusty, T., Libchaber, A.: Protein-DNA computation by stochastic assembly cascade. Proc. Natl. Acad. Sci. USA 99(18), 11589–11592 (2002)

    Article  ADS  Google Scholar 

  24. Murugan, A., Huse, D.A., Leibler, S.: Speed, dissipation, and error in kinetic proofreading. Proc. Natl. Acad. Sci. USA 109(30), 12034–12039 (2012)

    Article  ADS  Google Scholar 

  25. Yan, J., Magnasco, M.O., Marko, J.F.: A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401(6756), 932–935 (1999)

    Article  ADS  Google Scholar 

  26. Sancar, A., Lindsey-Boltz, L.A., Linn, S., Ünsal-Kaçmaz, K.: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints (2004). doi:10.1146/annurev.biochem.73.011303.073723

  27. Li, W., Ma, A.: Recent developments in methods for identifying reaction coordinates. Mol. Simul. 40(10–11), 784–793 (2014)

    Article  Google Scholar 

  28. Sontag, E.D.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control 46(7), 1028–1047 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Munsky, B., Nemenman, I., Bel, G.: Specificity and completion time distributions of biochemical processes. J. Chem. Phys. 131(23), 235103 (2009)

    Article  ADS  Google Scholar 

  30. De Ronde, W.H., Daniels, BC., Sinitsyn, N.A., Nemenman, I., Mugler, A.: Statistical properties of multistep enzyme-mediated reactions (2008). doi:10.1049/iet-syb.2008.0167

  31. Rabinowitz, J.D., Beeson, C., Lyons, D.S., Davis, M.M., McConnell, H.M.: Kinetic discrimination in T-cell activation. Proc. Natl. Acad. Sci. USA 93(4), 1401–1405 (1996)

    Article  ADS  Google Scholar 

  32. MacGlashan, D.: Signaling cascades: escape from kinetic proofreading. Proc. Natl. Acad. Sci. USA 98, 6989–6990 (2001)

    Article  ADS  Google Scholar 

  33. Vaikuntanathan, S., Gingrich, T.R., Geissler, P.L.: Dynamic phase transitions in simple driven kinetic networks. Phys. Rev. E 89(6), 062108 (2014)

    Article  ADS  Google Scholar 

  34. Sinai, Y.G.: A random-walk with random potential. Theory Probab. Appl. 38(2), 382–385 (1993)

    Article  MathSciNet  Google Scholar 

  35. Bennett, C.H.: Dissipation-error tradeoff in proofreading. BioSystems 11(2–3), 85–91 (1979)

    Article  Google Scholar 

  36. Qian, H.: Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J. Mol. Biol. (2006). doi:10.1016/j.jmb.2006.07.068

  37. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(13), 1–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. Depken, M., Parrondo, J.M.R., Grill, S.W.: Intermittent transcription dynamics for the rapid production of long transcripts of high fidelity. Cell Rep. 5(2), 521–530 (2013)

    Article  Google Scholar 

  39. Süel, G.M., Garcia-Ojalvo, J., Liberman, L.M., Elowitz, M.B.: An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440(7083), 545–550 (2006)

    Article  ADS  Google Scholar 

  40. Lebowitz, J.L., Spohn, H.: A GallavottiCohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Chetrite, R., Touchette, H.: Nonequilibrium microcanonical and canonical ensembles and their equivalence. Phys. Rev. Lett. 111, 120601 (2013)

    Article  ADS  Google Scholar 

  42. Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Progr. Theor. Phys. 184, 304–317 (2010)

    Article  MATH  Google Scholar 

  43. Dellago, C., Bolhuis, P.G., Csajka, F.S.: Transition path sampling and the calculation of rate constants. J. Chem. 108(5), 1964 (1998)

    ADS  Google Scholar 

  44. Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K., van Wijland, F.: Dynamical first-order phase transition in kinetically constrained models of glasses. Phys. Rev. Lett. 98(19), 195702 (2007)

    Article  ADS  Google Scholar 

  45. Weber, J.K., Jack, R.L., Pande, V.S.: Emergence of glass-like behavior in markov state models of protein folding dynamics. J. Am. Chem. Soc. 135(15), 5501–5504 (2013)

    Article  Google Scholar 

  46. Hurtado, Pablo I., Garrido, Pedro L.: Spontaneous symmetry breaking at the fluctuating level. Phys. Rev. Lett. 107(18), 180601 (2011)

    Article  ADS  Google Scholar 

  47. Derrida, B., Mecheri, K., Pichard, J.L.: Lyapounov exponents of products of random matrices: weak disorder expansion.-application to localisation. J. Phys. 48(5), 733–740 (1987)

    Article  Google Scholar 

  48. Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl. Acad. Sci. USA 91(12), 5682–5685 (1994)

    Article  ADS  Google Scholar 

  49. Bowne-Anderson, H., Zanic, M., Kauer, M., Howard, J.: Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 35(5), 452–461 (2013)

    Article  Google Scholar 

  50. Kirschner, M.W., Gerhart, J.C.: The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, (2006)

  51. Wystrach, A., Schwarz, S., Baniel, A., Cheng, K.: Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc. R. Soc. B 280(1769), 20131677–20131677 (2013)

    Article  Google Scholar 

  52. Bénichou, O., Loverdo, C., Moreau, M.: Intermittent search strategies. Rev. Mod, Phys (2011). doi:10.1103/RevModPhys.83.81

  53. von Hippel, P.H., Berg, O.G.: Facilitated target location in biological systems. J. Biol, Chem (1989). http://www.jbc.org/content/264/2/675.abstract

  54. Zandarashvili, L., Esadze, A., Vuzman, D., Kemme, C.A., Levy, Y., Iwahara, J.: Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble. Proc. Natl. Acad. Sci. USA 112(37), E5142–E5149 (2015)

    Article  ADS  Google Scholar 

  55. Liao, Y., Schroeder, J.W., Gao, B., Simmons, L.A., Biteen, J.S.: Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair. Proc. Natl. Acad. Sci. USA 112, E6898–E6906 (2015)

    Article  ADS  Google Scholar 

  56. Rao, R., Peliti, L.: Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs. arXiv (2015). doi:10.1088/1742-5468/2015/06/P06001

  57. Ling, J., Roy, H., Ibba, M.: Mechanism of tRNA-dependent editing in translational quality control. Proc. Natl. Acad. Sci. USA 104(1), 72–77 (2007)

    Article  ADS  Google Scholar 

  58. Lang, A.H., Fisher, C.K., Mora, T., Mehta, P.: Thermodynamics of statistical inference by cells. Phys. Rev. Lett. 113(14), 148103 (2014)

    Article  ADS  Google Scholar 

  59. Endres, R.G., Wingreen, N.S.: Maximum likelihood and the single receptor. Phys. Rev. Lett. 103(15), 158101 (2009)

    Article  ADS  Google Scholar 

  60. Mora, T., Wingreen, N.S.: Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104(24), 248101 (2010)

    Article  ADS  Google Scholar 

  61. Mora, T.: Physical limit to concentration sensing amid spurious ligands. Phys. Rev. Lett. 115(3), 038102 (2015)

    Article  ADS  Google Scholar 

  62. Govern, C.C., ten Wolde, P.R.: Optimal resource allocation in cellular sensing systems. Proc. Natl. Acad. Sci. USA 111(49), 17486–17491 (2014)

    Article  ADS  Google Scholar 

  63. Barato, A.C., Hartich, D., Seifert, U.: Information-theoretic versus thermodynamic entropy production in autonomous sensory networks. Phys. Rev. E 87(4), 042104 (2013)

    Article  ADS  Google Scholar 

  64. Barato, A.C., Hartich, D., Seifert, U.: Efficiency of cellular information processing. New J. Phys. 16(10), 103024 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  65. Baylor, D.: How photons start vision. Proc. Natl. Acad. Sci. USA 93(2), 560–565 (1996)

    Article  ADS  Google Scholar 

  66. Lin, J., Chew, J., Chockanathan, U., Rust, M.J.: Mixtures of opposing phosphorylations within hexamers precisely time feedback in the cyanobacterial circadian clock. Proc. Natl. Acad. Sci. USA 111(37), E3937–E3945 (2014)

    Article  ADS  Google Scholar 

  67. Korobkova, E.A., Emonet, T., Park, H., Cluzel, P.: Hidden stochastic nature of a single bacterial motor. Phys. Rev. Lett. 96, 058105 (2006)

    Article  ADS  Google Scholar 

  68. Jean-Benoît, L., Paul, F.: Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism. Proc. Natl. Acad. Sci. USA 112(6), 1898–1903 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge useful discussions with Michael Brenner, Aaron Dinner, Todd Gingrich, David Huse, Stan Leibler, Pankaj Mehta, Matthew Pinson, Luca Peliti, Mike Rust, Mikhail Tikhonov and Thomas Witten. SV acknowledges funding from the University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suriyanarayanan Vaikuntanathan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murugan, A., Vaikuntanathan, S. Biological Implications of Dynamical Phases in Non-equilibrium Networks. J Stat Phys 162, 1183–1202 (2016). https://doi.org/10.1007/s10955-015-1445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1445-0

Keywords

  • Biological networks
  • Information processing
  • Dynamical phase transitions