Journal of Statistical Physics

, Volume 162, Issue 5, pp 1183–1202 | Cite as

Biological Implications of Dynamical Phases in Non-equilibrium Networks

  • Arvind Murugan
  • Suriyanarayanan VaikuntanathanEmail author


Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.


Biological networks Information processing Dynamical phase transitions 



We gratefully acknowledge useful discussions with Michael Brenner, Aaron Dinner, Todd Gingrich, David Huse, Stan Leibler, Pankaj Mehta, Matthew Pinson, Luca Peliti, Mike Rust, Mikhail Tikhonov and Thomas Witten. SV acknowledges funding from the University of Chicago.


  1. 1.
    Qian, H.: Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys, Chem (2007). doi: 10.1146/annurev.physchem.58.032806.104550
  2. 2.
    Hopfield, J.J.: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71(10), 4135 (1974)CrossRefADSGoogle Scholar
  3. 3.
    Hopfield, J.J.: The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc. Natl. Acad. Sci. USA 77(9), 5248 (1980)CrossRefADSGoogle Scholar
  4. 4.
    Ninio, J.: Kinetic amplification of enzyme discrimination. Biochimie 57(5), 587–595 (1975)CrossRefGoogle Scholar
  5. 5.
    Yuhai, T.: Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Ann. Rev. Biophys. 42, 337–359 (2013)CrossRefGoogle Scholar
  6. 6.
    Mehta, P., Schwab, D.J.: Energetic costs of cellular computation. Proc. Natl. Acad. Sci. USA 109(44), 17978–17982 (2012)CrossRefADSGoogle Scholar
  7. 7.
    Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod, Phys (1976). doi: 10.1103/RevModPhys.48.571
  8. 8.
    Yuhai, T.: The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons. Proc. Natl. Acad. Sci. USA 105(33), 11737–11741 (2008)CrossRefGoogle Scholar
  9. 9.
    Bialek, W., Setayeshgar, S.: Physical limits to biochemical signaling. Proc. Natl. Acad. Sci. USA 102(29), 10040–10045 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20(2), 193 (1977)CrossRefADSGoogle Scholar
  11. 11.
    Hartich, D., Barato, A.C., Seifert, U.: Nonequilibrium sensing and its analogy to kinetic proofreading. arXiv (2015). doi: 10.1088/1367-2630/17/5/055026
  12. 12.
    Murugan, A., Huse, D.A., Leibler, S.: Discriminatory proofreading regimes in nonequilibrium systems. Phys. Rev. X 4(2), 021016 (2014)Google Scholar
  13. 13.
    Lan, G., Sartori, P., Neumann, S., Sourjik, V.: Yuhai, Tu: The energy-speed-accuracy trade-off in sensory adaptation. Nat. Phys. 8(5), 422–428 (2012)CrossRefGoogle Scholar
  14. 14.
    Sartori, P., Pigolotti, S.: Kinetic versus energetic discrimination in biological copying. Phys. Rev. Lett. 110(18), 188101 (2013)CrossRefADSGoogle Scholar
  15. 15.
    Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48(4), 571–585 (1976)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Ehrenberg, M., Blomberg, C.: Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J. 31(3), 333–358 (1980)CrossRefADSGoogle Scholar
  17. 17.
    Hlavacek, W.S., Redondo, A., Metzger, H., Wofsy, C., Goldstein, B.: Kinetic proofreading models for cell signaling predict ways to escape kinetic proofreading. Proc. Natl. Acad. Sci. USA 98(13), 7295–7300 (2001)CrossRefADSGoogle Scholar
  18. 18.
    McKeithan, T.W.: Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92(11), 5042 (1995)CrossRefADSGoogle Scholar
  19. 19.
    Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4(6), 445–456 (2004)CrossRefGoogle Scholar
  20. 20.
    François, P., Voisinne, G., Siggia, E.D., Altan-Bonnet, G., Vergassola, M.: Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. Proc. Natl. Acad. Sci. USA 110(10), E888–E897 (2013)CrossRefADSGoogle Scholar
  21. 21.
    Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S., Puglisi, J.D.: tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11(10), 1008–1014 (2004)CrossRefGoogle Scholar
  22. 22.
    Johansson, M., Lovmar, M., Ehrenberg, M.: Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 11(2), 141–147 (2008)CrossRefGoogle Scholar
  23. 23.
    Bar-Ziv, R., Tlusty, T., Libchaber, A.: Protein-DNA computation by stochastic assembly cascade. Proc. Natl. Acad. Sci. USA 99(18), 11589–11592 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Murugan, A., Huse, D.A., Leibler, S.: Speed, dissipation, and error in kinetic proofreading. Proc. Natl. Acad. Sci. USA 109(30), 12034–12039 (2012)CrossRefADSGoogle Scholar
  25. 25.
    Yan, J., Magnasco, M.O., Marko, J.F.: A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401(6756), 932–935 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Sancar, A., Lindsey-Boltz, L.A., Linn, S., Ünsal-Kaçmaz, K.: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints (2004). doi: 10.1146/annurev.biochem.73.011303.073723
  27. 27.
    Li, W., Ma, A.: Recent developments in methods for identifying reaction coordinates. Mol. Simul. 40(10–11), 784–793 (2014)CrossRefGoogle Scholar
  28. 28.
    Sontag, E.D.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control 46(7), 1028–1047 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Munsky, B., Nemenman, I., Bel, G.: Specificity and completion time distributions of biochemical processes. J. Chem. Phys. 131(23), 235103 (2009)CrossRefADSGoogle Scholar
  30. 30.
    De Ronde, W.H., Daniels, BC., Sinitsyn, N.A., Nemenman, I., Mugler, A.: Statistical properties of multistep enzyme-mediated reactions (2008). doi: 10.1049/iet-syb.2008.0167
  31. 31.
    Rabinowitz, J.D., Beeson, C., Lyons, D.S., Davis, M.M., McConnell, H.M.: Kinetic discrimination in T-cell activation. Proc. Natl. Acad. Sci. USA 93(4), 1401–1405 (1996)CrossRefADSGoogle Scholar
  32. 32.
    MacGlashan, D.: Signaling cascades: escape from kinetic proofreading. Proc. Natl. Acad. Sci. USA 98, 6989–6990 (2001)CrossRefADSGoogle Scholar
  33. 33.
    Vaikuntanathan, S., Gingrich, T.R., Geissler, P.L.: Dynamic phase transitions in simple driven kinetic networks. Phys. Rev. E 89(6), 062108 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Sinai, Y.G.: A random-walk with random potential. Theory Probab. Appl. 38(2), 382–385 (1993)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Bennett, C.H.: Dissipation-error tradeoff in proofreading. BioSystems 11(2–3), 85–91 (1979)CrossRefGoogle Scholar
  36. 36.
    Qian, H.: Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J. Mol. Biol. (2006). doi: 10.1016/j.jmb.2006.07.068
  37. 37.
    Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(13), 1–69 (2009)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Depken, M., Parrondo, J.M.R., Grill, S.W.: Intermittent transcription dynamics for the rapid production of long transcripts of high fidelity. Cell Rep. 5(2), 521–530 (2013)CrossRefGoogle Scholar
  39. 39.
    Süel, G.M., Garcia-Ojalvo, J., Liberman, L.M., Elowitz, M.B.: An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440(7083), 545–550 (2006)CrossRefADSGoogle Scholar
  40. 40.
    Lebowitz, J.L., Spohn, H.: A GallavottiCohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Chetrite, R., Touchette, H.: Nonequilibrium microcanonical and canonical ensembles and their equivalence. Phys. Rev. Lett. 111, 120601 (2013)CrossRefADSGoogle Scholar
  42. 42.
    Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Progr. Theor. Phys. 184, 304–317 (2010)CrossRefzbMATHGoogle Scholar
  43. 43.
    Dellago, C., Bolhuis, P.G., Csajka, F.S.: Transition path sampling and the calculation of rate constants. J. Chem. 108(5), 1964 (1998)ADSGoogle Scholar
  44. 44.
    Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K., van Wijland, F.: Dynamical first-order phase transition in kinetically constrained models of glasses. Phys. Rev. Lett. 98(19), 195702 (2007)CrossRefADSGoogle Scholar
  45. 45.
    Weber, J.K., Jack, R.L., Pande, V.S.: Emergence of glass-like behavior in markov state models of protein folding dynamics. J. Am. Chem. Soc. 135(15), 5501–5504 (2013)CrossRefGoogle Scholar
  46. 46.
    Hurtado, Pablo I., Garrido, Pedro L.: Spontaneous symmetry breaking at the fluctuating level. Phys. Rev. Lett. 107(18), 180601 (2011)CrossRefADSGoogle Scholar
  47. 47.
    Derrida, B., Mecheri, K., Pichard, J.L.: Lyapounov exponents of products of random matrices: weak disorder expansion.-application to localisation. J. Phys. 48(5), 733–740 (1987)CrossRefGoogle Scholar
  48. 48.
    Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl. Acad. Sci. USA 91(12), 5682–5685 (1994)CrossRefADSGoogle Scholar
  49. 49.
    Bowne-Anderson, H., Zanic, M., Kauer, M., Howard, J.: Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 35(5), 452–461 (2013)CrossRefGoogle Scholar
  50. 50.
    Kirschner, M.W., Gerhart, J.C.: The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, (2006)Google Scholar
  51. 51.
    Wystrach, A., Schwarz, S., Baniel, A., Cheng, K.: Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc. R. Soc. B 280(1769), 20131677–20131677 (2013)CrossRefGoogle Scholar
  52. 52.
    Bénichou, O., Loverdo, C., Moreau, M.: Intermittent search strategies. Rev. Mod, Phys (2011). doi: 10.1103/RevModPhys.83.81
  53. 53.
    von Hippel, P.H., Berg, O.G.: Facilitated target location in biological systems. J. Biol, Chem (1989).
  54. 54.
    Zandarashvili, L., Esadze, A., Vuzman, D., Kemme, C.A., Levy, Y., Iwahara, J.: Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble. Proc. Natl. Acad. Sci. USA 112(37), E5142–E5149 (2015)CrossRefADSGoogle Scholar
  55. 55.
    Liao, Y., Schroeder, J.W., Gao, B., Simmons, L.A., Biteen, J.S.: Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair. Proc. Natl. Acad. Sci. USA 112, E6898–E6906 (2015)CrossRefADSGoogle Scholar
  56. 56.
    Rao, R., Peliti, L.: Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs. arXiv (2015). doi: 10.1088/1742-5468/2015/06/P06001
  57. 57.
    Ling, J., Roy, H., Ibba, M.: Mechanism of tRNA-dependent editing in translational quality control. Proc. Natl. Acad. Sci. USA 104(1), 72–77 (2007)CrossRefADSGoogle Scholar
  58. 58.
    Lang, A.H., Fisher, C.K., Mora, T., Mehta, P.: Thermodynamics of statistical inference by cells. Phys. Rev. Lett. 113(14), 148103 (2014)CrossRefADSGoogle Scholar
  59. 59.
    Endres, R.G., Wingreen, N.S.: Maximum likelihood and the single receptor. Phys. Rev. Lett. 103(15), 158101 (2009)CrossRefADSGoogle Scholar
  60. 60.
    Mora, T., Wingreen, N.S.: Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104(24), 248101 (2010)CrossRefADSGoogle Scholar
  61. 61.
    Mora, T.: Physical limit to concentration sensing amid spurious ligands. Phys. Rev. Lett. 115(3), 038102 (2015)CrossRefADSGoogle Scholar
  62. 62.
    Govern, C.C., ten Wolde, P.R.: Optimal resource allocation in cellular sensing systems. Proc. Natl. Acad. Sci. USA 111(49), 17486–17491 (2014)CrossRefADSGoogle Scholar
  63. 63.
    Barato, A.C., Hartich, D., Seifert, U.: Information-theoretic versus thermodynamic entropy production in autonomous sensory networks. Phys. Rev. E 87(4), 042104 (2013)CrossRefADSGoogle Scholar
  64. 64.
    Barato, A.C., Hartich, D., Seifert, U.: Efficiency of cellular information processing. New J. Phys. 16(10), 103024 (2014)CrossRefADSMathSciNetGoogle Scholar
  65. 65.
    Baylor, D.: How photons start vision. Proc. Natl. Acad. Sci. USA 93(2), 560–565 (1996)CrossRefADSGoogle Scholar
  66. 66.
    Lin, J., Chew, J., Chockanathan, U., Rust, M.J.: Mixtures of opposing phosphorylations within hexamers precisely time feedback in the cyanobacterial circadian clock. Proc. Natl. Acad. Sci. USA 111(37), E3937–E3945 (2014)CrossRefADSGoogle Scholar
  67. 67.
    Korobkova, E.A., Emonet, T., Park, H., Cluzel, P.: Hidden stochastic nature of a single bacterial motor. Phys. Rev. Lett. 96, 058105 (2006)CrossRefADSGoogle Scholar
  68. 68.
    Jean-Benoît, L., Paul, F.: Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism. Proc. Natl. Acad. Sci. USA 112(6), 1898–1903 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Arvind Murugan
    • 1
    • 2
    • 3
  • Suriyanarayanan Vaikuntanathan
    • 2
    • 4
    Email author
  1. 1.School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and TechnologyHarvard UniversityCambridgeUSA
  2. 2.James Franck InstituteUniversity of ChicagoChicagoUSA
  3. 3.Department of PhysicsUniversity of ChicagoChicagoUSA
  4. 4.Department of ChemistryUniversity of ChicagoChicagoUSA

Personalised recommendations