Skip to main content
Log in

Representation and Poly-time Approximation for Pressure of \(\mathbb {Z}^2\) Lattice Models in the Non-uniqueness Region

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a new pressure representation theorem for nearest-neighbour Gibbs interactions and apply this to obtain the existence of efficient algorithms for approximating the pressure in the 2-dimensional ferromagnetic Potts, multi-type Widom–Rowlinson and hard-core models. For Potts model, our results apply to every inverse temperature but the critical. For Widom–Rowlinson and hard-core models, they apply to certain subsets of both the subcritical and supercritical regions. The main novelty of our work is in the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., et al.: Discontinuity of the magnetisation in one-dimensional \(1/|x-y|^2\) Ising and Potts models. J. Stat. Phys. 50, 1–40 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alexander, K.: Mixing properties and exponential decay for lattice systems in finite volumes. Ann. Probab. 32, 441–487 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, R.: Variational approximations for square lattice models in statistical mechanics. J. Stat. Phys. 19(5), 461–478 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  5. Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A 13.3, L61 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  6. Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q \geqslant 1\). Probab. Theory Relat. Fields 153(3–4), 511–542 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bowen, R.: In: Chazottes, J.R. (ed.) Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin (2008)

    Google Scholar 

  8. Briceño, R.: The topological strong spatial mixing property and new conditions for pressure approximation. Version 1. 2014. arXiv:1411.2289

  9. Chayes, J.T., Chayes, L., Schonmann, R.H.: Exponential decay of connectivities in the two-dimensional Ising model. J. Stat. Phys. 49(3-4), 433–445 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chayes, L.: Percolation and ferromagnetism on \(\mathbb{Z}^2\): the \(q\)-state Potts cases. Stoch. Process. Appl. 65(2), 209–216 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coquille, L., et al.: On the Gibbs states of the noncritical Potts model on \(\mathbb{Z}^2\). Probab. Theory Relat. Fields 158(1–2), 477–512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deuschel, J.-D., Pisztora, A.: Surface order large deviations for high-density percolation. Probab. Theory Relat. Fields 104, 467–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dobrushin, R.L.: The problem of uniqueness of a Gibssian random field and the problem of phase transitions. Funct. Anal. Appl. 2, 302–312 (1968)

    Article  MATH  Google Scholar 

  14. Friedland, S.: On the entropy of \(\mathbb{Z}^{d}\) subshifts of finite type. Linear Algebra Appl. 252, 199–220 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gamarnik, D., Katz, D.: Sequential cavity method for computing free energy and surface pressure. J. Stat. Phys. 137(2), 205–232 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Georgii, H.-O.: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, vol. 9, 2nd edn. De Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  17. Georgii, H.-O., Higuchi, Y.: Percolation and number of phases in the twodimensional Ising model. J. Math. Phys. 41(3), 1153–1169 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Georgii, H.-O., Zagrebnov, V.: Entropy-driven phase transitions in multitype lattice gas models. J. Stat. Phys. 102, 35–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. In: Domb, C., Lebowitz, L. (eds.) Phase Transitions and Critical Phenomena, vol. 18, pp. 1–42. Academic Press, London (2001)

    Chapter  Google Scholar 

  20. Grimmett, G.R.: The Random–Cluster Model. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  21. Higuchi, Y., Takei, M.: Some results on the phase structure of the twodimensional Widom–Rowlinson model. Osaka J. Math. 41, 237–255 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. (2) 171.3, 2011–2038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, G.: Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  24. Kesten, H.: Aspects of first passage percolation. In: Hennequin, P. (ed.) Éc. Été Probab. St.-Flour XIV. Lecture Notes in Mathematics, vol. 1180, pp. 125–264. Springer, Berlin (1986)

    Google Scholar 

  25. Klarner, D.A., Rivest, R.L.: A procedure for improving the upper bound for the number of \(n\)-ominoes. Can. J. Math. 25(3), 585–602 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  27. Krengel, U., Brunel, A.: Ergodic Theorems. De Gruyter Studies in Mathematics. W. de Gruyter, Berlin (1985)

    Book  Google Scholar 

  28. Krieger, W.: On the uniqueness of the equilibrium state. Math. Syst. Theory 8(2), 97–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marcus, B., Pavlov, R.: An integral representation for topological pressure in terms of conditional probabilities. Isr. J. Math. 207(1), 395–433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marcus, B., Pavlov, R.: Approximating entropy for a class of \(\mathbb{Z}^2\) Markov random fields and pressure for a class of functions on \(\mathbb{Z}^2\) shifts of finite type. Ergod. Theory Dyn. Syst. 33, 186–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marcus, B., Pavlov, R.: Computing bounds for entropy of stationary \(\mathbb{Z}^d\) Markov random fields. SIAM J. Discret. Math. 27(3), 1544–1558 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Menshikov, M.: Coincidence of critical points in percolation problems. Sov. Math. Dokl. 33, 856–859 (1986)

    MathSciNet  MATH  Google Scholar 

  33. Misiurewicz, M.: A short proof of the variational principle for a \(\mathbb{Z}^{N}_{+}\) action on a compact space. In: International Conference on Dynamical Systems in Mathematical Physics. Vol. 40. Astérisque. Paris: Soc. Math. France, 1976, pp. 147–157

  34. Pfister, C.-E., Velenik, Y.: Mathematical theory of the wetting phenomenon in the 2D Ising model. Helv. Phys. Acta 69(5–6), 949–973 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Ruelle, D.: Thermodynamic Formalism. The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  36. Runnels, L.K., Lebowitz, J.L.: Phase transitions of a multicomponent Widom–Rowlinson model. J. Math. Phys. 15(10), 1712–1717 (1974)

    Article  ADS  Google Scholar 

  37. Russo, L.: The infinite cluster method in the two-dimensional Ising model. Commun. Math. Phys. 67(3), 251–266 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  38. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeit. 56(2), 229–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab. 22(2), 749–763 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vera, J.C., Vigoda, E., Yang, L.: Improved bounds on the phase transition for the hard-core model in 2-dimensions. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Lecture Notes in Computer Science, vol. 8096, pp. 699–713. Springer, Berlin (2013)

    Chapter  Google Scholar 

  41. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank Nishant Chandgotia and Andrew Rechnitzer for helpful discussions. We also thank the anonymous referees. B. Marcus was partially supported by an NSERC grant and R. Pavlov was partially supported by an NSF grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Briceño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, S., Briceño, R., Marcus, B. et al. Representation and Poly-time Approximation for Pressure of \(\mathbb {Z}^2\) Lattice Models in the Non-uniqueness Region. J Stat Phys 162, 1031–1067 (2016). https://doi.org/10.1007/s10955-015-1433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1433-4

Keywords

Mathematics Subject Classification

Navigation