Skip to main content
Log in

Stochastic Equation of Fragmentation and Branching Processes Related to Avalanches

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give a stochastic model for the fragmentation phase of an avalanche. We construct a fragmentation-branching process related to the avalanches, on the set of all fragmentation sizes introduced by Bertoin. A fractal property of this process is emphasized. We also establish a specific stochastic differential equation of fragmentation. It turns out that specific branching Markov processes on finite configurations of particles with sizes bigger than a strictly positive threshold are convenient for describing the continuous time evolution of the number of the resulting fragments. The results are obtained by combining analytic and probabilistic potential theoretical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertoin, J.: Random Fragmentation and Coagulation Processes. Cambrige University Press, Cambrige (2006)

    Book  MATH  Google Scholar 

  2. Beznea, L., Cîmpean, I., On Bochner–Kolmogorov theorem. In: Séminaire de Probabilités XLVI (Lecture Notes in Mathematics), vol. 2123, 61–70. Springer, Berlin (2014)

  3. Beznea, L., Deaconu, M., Lupaşcu, O.: Branching processes for the fragmentation equation. Stoch. Process. Their Appl. 125, 1861–1885 (2015)

    Article  MATH  Google Scholar 

  4. Beznea, L., Lupaşcu, O.: Measure valued discrete branching Markov processes. Trans. Am. Math. Soc. (2015). doi:10.1090/tran/6514

  5. Beznea, L., Lupaşcu, O., Oprina, A.-G.: A unifying construction for measure-valued continuous and discrete branching processes. In: Complex Analysis and Potential Theory (CRM Proceedings and Lecture Notes), vol. 55, pp. 47–59. American Mathematical Society, Providence (2012)

  6. Beznea, L., Oprina, A.-G.: Nonlinear PDEs and measure-valued branching type processes. J. Math. Anal. Appl. 384, 16–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beznea, L., Röckner, M.: Applications of compact superharmonic functions. Complex Anal. Oper. Theory 5, 731–741 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York (1968)

    MATH  Google Scholar 

  9. Bony, J.-M., Courrege, P., Priouret, P.: Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fournier 2, 369–521 (1968)

    Article  MathSciNet  Google Scholar 

  10. Bressaud, X., Fournier, N.: On the invariant distribution of a one-dimensional avalanche process. Ann. Probab. 37, 48–77 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carbone, A., Chiaia, B., Frigo, B., Turk, C.: Snow metamorphism: a fractal approach. Phys. Rev. E 82(3), 036103 (2010)

    Article  ADS  Google Scholar 

  12. Cepeda, E.: Contribution to the probabilistic and numerical study of homogeneous Coagulation-Fragmentation equations. Probability. Université Paris-Est, Champs-sur-Marne (2013)

    Google Scholar 

  13. De Biagi, V., Chiaia, B., Frigo, B.: Fractal grain distribution in snow avalanche deposits. J. Glaciol. 58, 340–346 (2012)

    Article  Google Scholar 

  14. De Blasio, F.V.: Dynamical stress in force chains of granular media traveling on a bumpy terrain and the fragmentation of rock avalanches. Acta Mech. 221, 375–382 (2011)

    Article  MATH  Google Scholar 

  15. De Blasio, F.V., Crosta, B.G.: Simple physical model for the fragmentation of rock avalanches. Acta Mech. 225, 243–252 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deaconu, M., Fournier, N., Tanre, E.: Rate of convergence of a stochastic particle system for the Smoluchowski coagulation equation. Methodol. Comput. Appl. Probab. 5, 131–158 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ethier, N.S., Kurtz, T.G.: Markov Processes–Characterization and Convergence. Willey, New York (1986)

    MATH  Google Scholar 

  18. Faillettaz, J., Louchet, F., Grasso, J.R.: Two-threshold model for scaling laws of noninteracting snow avalanches. Phys. Rev. Lett. 93(20), 208001 (2004)

    Article  ADS  Google Scholar 

  19. Fournier, N., Giet, J.-S.: On small particles in coagulation-fragmentation equations. J. Stat. Phys. 111, 1299–1329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garcia-Pelayo, R., Salazar, I., Schieve, W.C.: A branching process model for sand avalanches. J. Stat. Phys. 72, 167–187 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gray, J.M.N.T., Ancey, C.: Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387–423 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ikeda, N., Nagasawa, M., Watanabe, S.: Branching Markov processes I. J. Math. Kyoto Univ. 8, 233–278 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Jacod, J.: Calcul Stochastique et Problèmes de martingales (Lecture Notes in Mathematics), vol. 714. Springer, Berlin (1979)

    Google Scholar 

  24. Lee, D.-S., Goh, K.-I., Kahng, B., Kim, D.: Branching process approach to avalanche dynamics on complex networks. J. Korean Phys. Soc. 44, 633–637 (2004)

    Article  ADS  Google Scholar 

  25. Sharpe, M.: General Theory of Markov Processes. Academic Press, Boston (1988)

    MATH  Google Scholar 

  26. Shindin, S., Parumasur, N.: Numerical simulation of a transport fragmentation coagulation model. Appl. Math. Comput. 246, 192–198 (2014)

    Article  MathSciNet  Google Scholar 

  27. Silverstein, M.L.: Markov processes with creation of particles. Z. Warsch. Verw. Geb. 9, 235–257 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zapperi, S., Lauritsen, K.B., Stanley, E.: Self-organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75(22), 4071 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge enlightening discussions with Ioan R. Ionescu and Jean-Stéphane Dhersin, during the preparation of this paper. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0045. For the third author the research was financed through the project “Excellence Research Fellowships for Young Researchers”, the 2015 Competition, founded by the Research Institute of the University of Bucharest (ICUB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Beznea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beznea, L., Deaconu, M. & Lupaşcu, O. Stochastic Equation of Fragmentation and Branching Processes Related to Avalanches. J Stat Phys 162, 824–841 (2016). https://doi.org/10.1007/s10955-015-1432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1432-5

Keywords

Mathematics Subject Classification

Navigation