Skip to main content
Log in

Eigenvalue Attraction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We remark that the theory of pseudo-spectra [1] quantifies how far an eigenvalue can wander without quantifying the direction of the motion.

  2. Strictly speaking Dirac’s derivation of Eq. 10 in Sect. 43 of this reference, does not hold in general (e.g., non-Hermitian) as the left eigenvectors are not ’bras’ in his notation. The latter is a Hermitian conjugate of a standard (right) eigenvector. In his book, Dirac cites [Born, Heisenberg and Jordan, z.f. Physik 35, 565 (1925)] for these formulas.

  3. We denote the eigenvalue by \(\lambda _{k}\) instead of \(\lambda _{i}\) above because \(i\equiv \sqrt{-1}\) appears more in the following discussion.

  4. It is possible to construct \(C^{\infty }\) versions of such window functions such as the Planck-taper window function [27, pp. 127–134]; however, W has a simple form with the basic differentiability properties needed here.

  5. This question was posed to us by Freeman Dyson.

References

  1. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  2. Tao, T.: Poincaré’s Legacies: Pages from Year Two of a Mathematical Blog. American Mathematical Society, Providence, RI (2009)

    Book  Google Scholar 

  3. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, New York (1981)

    Google Scholar 

  4. Erdös, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for wigner random matrices. Int. Math. Res. Notices 3, 436–479 (2010)

    Google Scholar 

  5. Tao, T.: Topics in Random Matrix Theory (Graduate Studies in Mathematics). American Mathematical Society, Providence, RI (2012)

    Google Scholar 

  6. Dyson, F.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hatano, N., Nelson, D.R.: Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56, 8651–8673 (1997)

    Article  ADS  Google Scholar 

  8. Brézin, E., Zee, A.: Non-hermitean delocalization: multiple scattering and bounds. Nucl. Phys. B 509, 599–614 (1998)

    Article  ADS  MATH  Google Scholar 

  9. Brouwer, P., Silvestrov, P., Beenakker, C.: Theory of directed localization in one dimension. Phys. Rev. B 56, 55–57 (1997)

    Article  Google Scholar 

  10. Feinberg, J., Zee, A.: arXiv:cond-mat/9706218 (1997)

  11. Widom, H.: Eigenvalue distribution for non-selfadjoint Toeplitz matrices. Oper. Theory Adv. Appl. 71, 1–8 (1994)

    MathSciNet  Google Scholar 

  12. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  13. Nelson, D.R.: Biophysical dynamics in disorderly environments. Annu. Rev. Biophys. 41, 371–402 (2012)

    Article  Google Scholar 

  14. Goldsheid, I.Y., Khoruzhenko, B.A.: Distribution of eigenvalues in non-Hermitian Anderson models. Phys. Rev. Lett. 80(13), 2897 (1998)

    Article  ADS  Google Scholar 

  15. Bloch, J., Bruckmann, F., Meyer, N., Schierenberg, S.: Level spacings for weakly asymmetric real random matrices and application to two-color QCD with chemical potential. J. High Energy Phys. 8, 1–23 (2012)

    Google Scholar 

  16. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  17. Stewart, G., Sun, J.-G.: Matrix Perturbation Theory, 1st edn. Academic Press, London (1990)

    MATH  Google Scholar 

  18. Dirac, P.A.M.: The Principles of Quantum Mechanics, vol. 4. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  19. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, New York (1976)

    Book  MATH  Google Scholar 

  20. Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  21. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  23. Moro, J., Burke, J.V., Overton, M.L.: On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues of matrices with Arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18(4), 793–817 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publishers Inc, Breda (2006)

    Google Scholar 

  25. Bourgade, P., Yau, H.-T.: arXiv:1312.1301, preprint (2013)

  26. Stoica, P., Moses, R.L.: Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River (1997)

    MATH  Google Scholar 

  27. Tu, L.W.: An Introduction to Manifold. Springer, New York (2008)

    Google Scholar 

  28. Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7, 247 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, T., Vu, V.: arXiv:1206.1893 [math.PR] (2012)

  30. Boettcher, A., Embree, M., Sokolov, V.I.: The spectra of large Toeplitz band matrices with a randomly perturbed entry. Math. Comput. 72, 1329–1348 (2003)

    Article  ADS  MATH  Google Scholar 

  31. Mays, A.: One some non-hermitian ensembles of random gaussian matrices. Asia Pac. Math. Newslett. 4(1), 8 (2014)

    MathSciNet  Google Scholar 

  32. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32(1), 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Edelman, A.: The probability that a random real Gaussian matrix has \(k\) real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60(2), 203–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ticozzi, F., Lucchese, R., Cappellaro, P., Viola, L.: Hamiltonian control of quantum dynamical semigroups: stabilization and convergence speed. IEEE Trans. Autom. Control 57(8), 1931–1944 (2012)

    Article  MathSciNet  Google Scholar 

  35. Ticozzi, F., Viola, L.: Stabilizing entangled states with quasi-local quantum dynamical semigroups. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1979), 5259–5269 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank Leo P. Kadanoff, Steven G. Johnson, Tony Iarrobino and Gil Strang for discussions and the James Franck Institute at University of Chicago and the Perimeter Institute Canada, for having hosted me over the summer of 2013. I acknowledge the National Science Foundation’s support through Grant DMS. 1312831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramis Movassagh.

Appendix: Matlab Code

Appendix: Matlab Code

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movassagh, R. Eigenvalue Attraction. J Stat Phys 162, 615–643 (2016). https://doi.org/10.1007/s10955-015-1424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1424-5

Keywords

Navigation