Abstract
We evaluate the high temperature limit of the free energy of spin glasses on the hypercube with Hamiltonian \(H_N({\underline{\sigma }}) = {\underline{\sigma }}^T J {\underline{\sigma }}\), where the coupling matrix J is drawn from certain symmetric orthogonally invariant ensembles. Our derivation relates the annealed free energy of these models to a spherical integral, and expresses the limit of the free energy in terms of the limiting spectral measure of the coupling matrix J. As an application, we derive the limiting free energy of the random orthogonal model at high temperatures, which confirms non-rigorous calculations of Marinari et al. (J Phys A 27:7647, 1994). Our methods also apply to other well-known models of disordered systems, including the SK and Gaussian Hopfield models.
This is a preview of subscription content, access via your institution.

Notes
Condition (1.10) can be written as \(\lim _{N\rightarrow \infty }\mathbb {P}\left( \sum _{i=1}^{N} (d_i - \mathbb {E}(d_i))^2 > c \right) \rightarrow 0\) for any constant \(c>0\), since \(W_2^2(\mu _N(D) ,\mu _N(\mathbb {E}(D))) =\frac{1}{N} \sum _{i=1}^{N} (d_i - \mathbb {E}(d_i))^2\). Our results continue to hold if condition (1.10) is replaced by the following slightly general condition: there exists a sequence of deterministic measure \(\nu _N\) supported on N points in \({\mathbb {R}}\) such that \(\lim _{N\rightarrow \infty }\mathbb {P}\left( W_2 (\mu _N(D), \nu _N) > \frac{c}{\sqrt{N}}\right) \rightarrow 0\). However, condition (1.10) suffices in all our applications where we chose \(\nu _N=\frac{1}{N}\sum _{i=1}^N\delta _{\mathbb {E}(d_i)}\).
References
Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington-Kirkpatrick spin glass model. Commun. Math. Phys. 112(1), 3–20 (1987)
Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, vol. 118. Cambridge University Press, Cambridge (2010)
Bernasconi, J.: Low autocorrelation binary sequences: statistical mechanics and configuration space analysis. J. Phys. 48, 559 (1987)
Bovier, A., van Enter, A.C.D., Niederhauser, B.: Stochastic symmetry-breaking in a Gaussian Hopfield model. J. Stat. Phys. 95(1–2), 181–213 (1999)
Bovier, A., Gayrard, V.: An almost sure large deviation principle for the Hopfield model. Ann. Probab. 24(3), 1444–1475 (1996)
Bovier, A., Gayrard, V.: An almost sure central limit theorem for the Hopfield model. Ann. Probab. Markov Process Related Fields 3(2), 151–173 (1997)
Carmona, P., Hu, Y.: Universality in Sherrington-Kirkpatrick’s spin glass model. Annales de l’Institut Henri Poincare (B) 42(2), 215–222 (2006)
Chandra, H.: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87–120 (1957)
Chatterjee, S.: A simple invariance theorem, arXiv:math/0508213 (2005)
Cherrier, R., Dean, D.S., Lefèvre, A.: The role of the interaction matrix in mean-field spin glasses. Phys. Rev. E 67, 046112 (2003)
Collins, B., Śniady, P.: New scaling of Itzykson-Zuber integrals. Annales de l’Institut Henri Poincare (B) 43(2), 139–146 (2007)
Dallaporta, S.: Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices 1(3), 1250007 (2012)
Dallaporta, S.: Eigenvalue variance bounds for covariance matrices, arXiv:1309.6265 (2013)
Degli Espost, M., Giardiná, C., Graffi, S.: Energy landscape statistics of the random orthogonal model. J. Phys. A 36, 2983–2994 (2003)
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics, vol. 38, 2nd edn. Springer, New York (1998)
Gamboa, F., Rouault, A.: Canonical moments and random spectral measures. J. Theor. Probab. 23(4), 1015–1038 (2010)
Gentz, B.: A central limit theorem for the overlap in the Hopfield model. Ann. Probab. 24(4), 1809–1841 (1996)
Gromov, M.: Isoperimetric inequalities in Riemannian manifolds. In: Milman, V., Schechtman, G. (eds.) Asymptotic Theory of Finite Dimensional Normed Space. Lecture Notes in Mathematics, vol. 1200, p. 128. Springer, Berlin (1986)
Guionnet, A., Maida, M.: Fourier view on the \(R\)-transform and related asymptotics of spherical integrals. J. Funct. Anal. 222, 435–490 (2005)
Guionnet, A., Zeitouni, O.: Large deviations asymptotics for spherical integrals. J. Funct. Anal. 188(2), 461–515 (2002)
Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. American Mathematical Society, Providence (2000)
Marinari, E., Parisi, G., Ritort, F.: Replica field theory for deterministic models: binary sequences with low autocorrelation. J. Phys. A 27, 7615 (1994)
Marinari, E., Parisi, G., Ritort, F.: Replica field theory for deterministic models. II. A non-random spin glass with glassy behavior. J. Phys. A 27, 7647 (1994)
Montanari, A.: Statistical mechanics and algorithms on sparse and random graphs, St. Flour School of Probability (2013). http://web.stanford.edu/~montanar/OTHER/STATMECH/stflour.pdf
Panchenko, D.: The Sherrington-Kirkpatrick Model. Springer, New York (2013)
Simmons, G.F.: Introduction to Topology and Modern Analysis. R.E. Krieger Pub. Co., Malabar (1983)
Talagrand, M.: Rigorous results for the Hopfield model with many patterns. Probab. Theory Relat. Fields 110(2), 177–275 (1998)
Talagrand, M.: Spin Glasses, A Challenge for Mathematicians. Springer, Berlin (2003)
Zhao, J.: The Hopfield model with superlinearly many patterns. Stat. Probab. Lett. 83(1), 350–356 (2013)
Acknowledgments
The authors thank Amir Dembo, Andrea Montanari and Sourav Chatterjee for helpful discussions. S.S. thanks Zhou Fan for help with results about random matrices. S.S. was supported by a William R. and Sara Hart Kimball Stanford Graduate Fellowship. The authors also thank an anonymous referee for carefully reading the manuscript and for providing valuable comments which improved the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhattacharya, B.B., Sen, S. High Temperature Asymptotics of Orthogonal Mean-Field Spin Glasses. J Stat Phys 162, 63–80 (2016). https://doi.org/10.1007/s10955-015-1406-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-015-1406-7