Skip to main content
Log in

Protocols for Copying and Proofreading in Template-Assisted Polymerization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss how information encoded in a template polymer can be stochastically copied into a copy polymer. We consider four different stochastic copy protocols of increasing complexity, inspired by building blocks of the mRNA translation pathway. In the first protocol, monomer incorporation occurs in a single stochastic transition. We then move to a more elaborate protocol in which an intermediate step can be used for error correction. Finally, we discuss the operating regimes of two kinetic proofreading protocols: one in which proofreading acts from the final copying step, and one in which it acts from an intermediate step. We review known results for these models and, in some cases, extend them to analyze all possible combinations of energetic and kinetic discrimination. We show that, in each of these protocols, only a limited number of these combinations leads to an improvement of the overall copying accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrieux, D., Gaspard, P.: Nonequilibrium generation of information in copolymerization processes. Proc. Natl. Acad. Sci. 105(28), 9516–9521 (2008)

    Article  ADS  Google Scholar 

  2. Andrieux, D., Gaspard, P.: Information erasure in copolymers. Europhys. Lett. 103(3), 30,004 (2013)

    Article  Google Scholar 

  3. Bennett, C.H.: Dissipation-error tradeoff in proofreading. BioSystems 11(2), 85–91 (1979)

    Article  Google Scholar 

  4. Betterton, M., Jülicher, F.: A motor that makes its own track: helicase unwinding of DNA. Phys. Rev. Lett. 91(25), 258,103 (2003)

    Article  Google Scholar 

  5. Bo, S., Del Giudice, M., Celani, A.: Thermodynamic limits to information harvesting by sensory systems. J. Stat. Mech. 2015(1), P01,014 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cady, F., Qian, H.: Open-system thermodynamic analysis of DNA polymerase fidelity. Phys. Biol. 6(3), 036,011 (2009)

    Article  Google Scholar 

  7. Esposito, M., Lindenberg, K., Van den Broeck, C.: Extracting chemical energy by growing disorder: efficiency at maximum power. J. Stat. Mech. 2010(01), P01,008 (2010)

    Article  Google Scholar 

  8. François, P., Voisinne, G., Siggia, E.D., Altan-Bonnet, G., Vergassola, M.: Phenotypic model for early t-cell activation displaying sensitivity, specificity, and antagonism. Proc. Natl. Acad. Sci. 110(10), E888–E897 (2013)

    Article  ADS  Google Scholar 

  9. Freter, R.R., Savageau, M.A.: Proofreading systems of multiple stages for improved accuracy of biological discrimination. J. Theor. Biol. 85(1), 99–123 (1980)

    Article  Google Scholar 

  10. Galburt, E.A., Grill, S.W., Wiedmann, A., Lubkowska, L., Choy, J., Nogales, E., Kashlev, M., Bustamante, C.: Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446(7137), 820–823 (2007)

    Article  ADS  Google Scholar 

  11. Gromadski, K.B., Rodnina, M.V.: Kinetic determinants of high-fidelity trna discrimination on the ribosome. Mol. Cell 13(2), 191–200 (2004)

    Article  Google Scholar 

  12. Hartich, D., Barato, A.C., Seifert, U.: Nonequilibrium sensing and its analogy to kinetic proofreading. arXiv preprint arXiv:1502.02594 (2015)

  13. Hopfield, J.J.: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. 71(10), 4135–4139 (1974)

    Article  ADS  Google Scholar 

  14. Johansson, M., Bouakaz, E., Lovmar, M., Ehrenberg, M.: The kinetics of ribosomal peptidyl transfer revisited. Mol. Cell 30(5), 589–598 (2008)

    Article  Google Scholar 

  15. Johansson, M., Lovmar, M., Ehrenberg, M.: Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 11(2), 141–147 (2008)

    Article  Google Scholar 

  16. Lan, G., Sartori, P., Neumann, S., Sourjik, V., Tu, Y.: The energy-speed-accuracy trade-off in sensory adaptation. Nat. Phys. 8(5), 422–428 (2012)

    Article  Google Scholar 

  17. Loeb, L.A., Kunkel, T.A.: Fidelity of DNA synthesis. Annu. Rev. Biochem. 51(1), 429–457 (1982)

    Article  Google Scholar 

  18. Mckeithan, T.W.: Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. 92(11), 5042–5046 (1995)

    Article  ADS  Google Scholar 

  19. Mellenius, H., Ehrenberg, M.: DNA template dependent accuracy variation of nucleotide selection in transcription. PLoS One 10(3), e0119,588 (2015)

    Article  Google Scholar 

  20. Murugan, A., Huse, D.A., Leibler, S.: Speed, dissipation, and error in kinetic proofreading. Proc. Natl. Acad. Sci. 109(30), 12034–12039 (2012)

    Article  ADS  Google Scholar 

  21. Murugan, A., Huse, D.A., Leibler, S.: Discriminatory proofreading regimes in nonequilibrium systems. Phys. Rev. X 4(2), 021,016 (2014)

    Google Scholar 

  22. Ninio, J.: Kinetic amplification of enzyme discrimination. Biochimie 57(5), 587–595 (1975)

    Article  Google Scholar 

  23. Pape, T., Wintermeyer, W., Rodnina, M.: Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18(13), 3800–3807 (1999)

    Article  Google Scholar 

  24. Parrondo, J.M., Horowitz, J.M., Sagawa, T.: Thermodynamics of information. Nat. Phys. 11(2), 131–139 (2015)

    Article  Google Scholar 

  25. Pauling, L.: Festschrift fuer Prof. Dr. Arthur Stoll. Birkhauser, Basel (1958)

    Google Scholar 

  26. Rao, R., Peliti, L.: Thermodynamics of accuracy in kinetic proofreading: Dissipation and efficiency trade-offs. arXiv preprint arXiv:1504.02494 (2015)

  27. Sartori, P., Pigolotti, S.: Kinetic versus energetic discrimination in biological copying. Phys. Rev. Lett. 110(18), 188,101 (2013)

    Article  Google Scholar 

  28. Sartori, P., Pigolotti, S.: Thermodynamics of error correction. arXiv preprint arXiv:1504.06407 (2015)

  29. Savir, Y., Tlusty, T.: The ribosome as an optimal decoder: a lesson in molecular recognition. Cell 153(2), 471–479 (2013)

    Article  Google Scholar 

  30. Thompson, R.C., Karim, A.M.: The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP [gamma S]. Proc. Natl. Acad. Sci. 79(16), 4922–4926 (1982)

    Article  ADS  Google Scholar 

  31. Voliotis, M., Cohen, N., Molina-París, C., Liverpool, T.B.: Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J 94(2), 334–348 (2008)

    Article  Google Scholar 

  32. Zaher, H.S., Green, R.: Fidelity at the molecular level: lessons from protein synthesis. Cell 136(4), 746–762 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economia y Competividad (Spain) and FEDER (European Union), under Project FIS2012-37655-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Pigolotti.

Appendix: Exact Expressions

Appendix: Exact Expressions

In this Appendix, we report the exact expression for the solutions of the proofreading models, that have been omitted or simplified in the Results section for ease of reading.

1.1 Template-Assisted Polymerization Without Intermediate States

The exact equation for the error is in the Results section. The copying speed is equal to

$$\begin{aligned} v=k_{10}^w+k_{10}^r-k_{01}^w\eta -k_{01}^r(1-\eta ). \end{aligned}$$
(17)

1.2 Double-Step Copying

Also in this case, the exact equation for the error is in the Results section. The expression for the speed is

$$\begin{aligned} v=\mathcal {N}[p_1^w k_{21}^w+p_1^r k_{21}^r-k_{12}^w\eta -k_{12}^r(1-\eta ) ] \end{aligned}$$
(18)

where we introduced the normalization factor for the occupancies \(\mathcal {N}\), which in this case is equal to \(\mathcal {N}=(1+p_1^w+p_1^r)^{-1}\).

1.3 Kinetic Proofreading

The error rate of the proofreading model satisfies the equation

$$\begin{aligned} \frac{\eta }{1-\eta }&=\frac{\left[ e^{\frac{\delta _{10}}{T}}+re^{\frac{\delta _{21}+\mu _{21}}{T}}\right] }{\left( 1+r e^{\frac{\mu _{21}}{T}}\right) } \\&\quad \times \, \frac{r e^{\frac{\mu _{10}+\mu _{21}}{T}}+r_p\left( 1+r e^{\frac{\mu _{21}}{T}}\right) -\eta e^{\frac{\Delta E_2^w}{T}} \left[ r +(1+r) r_p e^{\frac{\mu _{02}}{T}}\right] }{r e^{\frac{\mu _{10}+\mu _{21}+\delta _{21}+\delta _{10}}{T}}+r_p e^{\frac{\delta _{20}}{T}}\left( e^{\frac{\delta _{10}}{T}}+r e^{\frac{\mu _{21}+\delta _{21}}{T}}\right) -(1-\eta )e^{\frac{\Delta E_2^r}{T}}A} \nonumber \end{aligned}$$
(19)

where \(r_p=\omega _{02}/\omega _{10}\) and \(A=\left( r e^{\frac{\delta _{10}+\delta _{21}}{T}} +r_p e^{\frac{\delta _{10}+\delta _{02}+\mu _{02}}{T}} +r r_p e^{\frac{\delta _{21}+\delta _{02}+\mu _{02}}{T}} \right) \).

The copying speed is equal to

$$\begin{aligned} v=\mathcal {N}[p_1^w k_{21}^w+k_{20}^w + p_1^r k_{21}^r+k_{20}^r-(k_{12}^w+k_{02}^w)\eta -(k_{12}^r+k_{02}^w)(1-\eta )] \end{aligned}$$
(20)

where \(\mathcal {N}\) is defined as previously.

1.4 Proofreading/Accommodation

The error rate satisfies

$$\begin{aligned} \frac{\eta }{1-\eta }&=e^{-\frac{\delta _{21}}{T}}\frac{\left[ e^{\frac{\delta _{10}}{T}}+\bar{r}e^{\frac{\bar{\delta }_{10}}{T}}+re^{\frac{\delta _{21}+\mu _{21}}{T}}\right] }{\left( 1+\bar{r}+r e^{\frac{\mu _{21}}{T}}\right) } \nonumber \\&\quad \times \, \frac{e^{\frac{\mu _{21}}{T}}\left( e^{\frac{\mu _{10}}{T}}+\bar{r}\right) -\eta e^{\frac{\Delta E_2^w}{T}}\left( 1+\bar{r}e^{\frac{\bar{\mu }_{10}}{T}}\right) }{e^{\frac{\mu _{21}}{T}}\left( e^{\frac{\mu _{10}+\delta _{10}}{T}}+\bar{r}e^{\frac{\bar{\delta }_{10}}{T}}\right) -(1-\eta ) e^{\frac{\Delta E_2^r}{T}} \left( e^{\frac{\delta _{10}}{T}}+\bar{r}e^{\frac{\bar{\mu }_{10}+\bar{\delta }_{10}}{T}}\right) } \end{aligned}$$
(21)

and the copying speed is

$$\begin{aligned} v=\mathcal {N}[p_1^w k_{21}^w+p_1^r k_{21}^r-k_{12}^w\eta -k_{12}^r(1-\eta )]. \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigolotti, S., Sartori, P. Protocols for Copying and Proofreading in Template-Assisted Polymerization. J Stat Phys 162, 1167–1182 (2016). https://doi.org/10.1007/s10955-015-1399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1399-2

Keywords

Navigation