Skip to main content
Log in

Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze a quantum system of N identical spinless particles of mass m, in the lattice \(\mathbb {Z}^d\), given by a Hamiltonian \(H_N=T_N+V_N\), with kinetic energy \(T_N\ge 0\) and potential \(V_N=V_{N,2}+V_{N,3}\) composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials \(V_{N,2}\) and \(V_{N,3}\) on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the \(H_N\) spectrum, \(\underline{\sigma }(H_N)\ge -cN\), for \(c>0\) independent of N. For \(V_{N,3}=0\), \(H_N\) is unstable, and the system collapses. If \(V_{N,3}\not =0\), \(H_N\) is stable and, for strong enough repulsion, we obtain \(\underline{\sigma }(H_N)\ge -c' N\), where \(c'N\) is the energy of (N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show \([\,\underline{\sigma }(V_N)/N\,]\) has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value \(N_s\) of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers \(N_r\) and \(N_s-N_r\), with \(N_r=1,\ldots ,N_s-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lieb, E.H., Yngvanson, J.: Ground State Energy of the low density. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  2. Asada, H., Futamase, T., Hogan, P.: Equations of Motion in General Relativity. Oxford University Press, New York (2010)

    Book  Google Scholar 

  3. Spencer, T.: The decay of the Bethe-Salpeter kernel in \(P(\phi )_2\) quantum field models. Commun. Math. Phys. 44, 143–164 (1975)

    Article  ADS  Google Scholar 

  4. Dimock, J., Eckmann, J.-P.: On the bound state in weakly coupled \(\lambda (\phi ^6-\phi ^4)_2\). Commun. Math. Phys. 51, 41–54 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  5. Comberscure, M., Dunlop, F.: n-Particle-irreducible functions in Euclidean quantum field theory. Ann. Phys. 122, 102–150 (1979)

    Article  ADS  Google Scholar 

  6. Koch, H.: Irreducible kernels and bound states in \(\lambda P(\varphi )_2\). Ann. Inst. Henri Poincaré A31, 173 (1979)

    Google Scholar 

  7. da Silva, Neves: R.: Three-particle bound states in even \(\lambda P(\phi )_2\). Helv. Phys. Acta 54, 131–190 (1981)

    MathSciNet  Google Scholar 

  8. O’Carroll, M., Faria da Veiga, P.A., Francisco Neto, A.: Analytic binding energies for two-baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Commun. Math. Phys. 321, 249–282 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Faria da Veiga, P.A., O’Carroll, M.: Eightfold way from dynamical first principles in strongly coupled lattice quantum chromodynamics. J. Math. Phys. 49, 042303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, New York (1986)

    Google Scholar 

  11. McGuire, J.B.: Study of exactly soluble one-dimensional N-body problems. J. Math. Phys. 5, 622–636 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Ruelle, D.: Statistical Mechanics: Rigorous Results. W.A. Benjamin, New York (1969)

    MATH  Google Scholar 

  13. Simon, B.: The \(P(\phi )_2\) Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974)

    Google Scholar 

  14. Reed, M., Simon, B.: Modern Methods of Mathematical Physics, vol. 2. Academic Press, London (1975)

    MATH  Google Scholar 

  15. Machleidt, R., Entem, D.R.: Towards a consistent approach to nuclear structure: EFT of two- and many-body forces. J. Phys. G31, S1235–S1244 (2005)

    Article  ADS  Google Scholar 

  16. Machleidt, R., Entem, D.R.: Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011)

    Article  ADS  Google Scholar 

  17. Gueorguiev, V.G., Navrátil, P., Vary, J.P., Draayer, J.P., Pan, F.: arXiv:1011.5947v1 (2010)

  18. Binder, S., Langhammer, J., Calci, A., Navrátil, P., Roth, R.: Ab initio calculations of medium-mass nuclei with explicit chiral 3N interactions. Phys. Rev. C 87, 021303(R) (2013)

    Article  ADS  Google Scholar 

  19. Creutz, M.: Quarks, Gluons and Lattices. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  20. Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Gattringer, C., Lang, C.B.: Quantum Chromodynamics on the Lattice: An Introductory Presentation. Springer, New York (2009)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo A. Faria da Veiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria da Veiga, P.A., O’Carroll, M. Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials. J Stat Phys 161, 712–720 (2015). https://doi.org/10.1007/s10955-015-1343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1343-5

Keywords

Navigation