Skip to main content
Log in

Simulation of Droplets Collisions Using Two-Phase Entropic Lattice Boltzmann Method

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The recently introduced entropic lattice Boltzmann model for multiphase flows (Mazloomi et al. in Phys Rev Lett 114:174502, 2015) is used to simulate binary droplet collisions. The entropy-based stabilization, together with a new polynomial equation of state, enhances performance of the model and allow us to simulate droplet collision for various Weber and Reynolds numbers and large liquid to vapor density ratio. Different types of droplet collision outcomes, namely coalescence, stretching separation and reflexive separation are recovered in a range of impact parameter for two equal sized droplets. The results demonstrated the essential role played by the surface tension, kinematic viscosity, impact parameter and relative velocity in the droplet collision dynamics leading to coalescence or separation collision outcomes. Comparison between numerical results and experiments in both coalescence and separation collisions demonstrate viability of the presented model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acevedo-Malavé, A., García-Sucre, M.: 3D coalescence collision of liquid drops using smoothed particle hydrodynamics. INTECH Publ. 5, 85–106 (2011)

    Google Scholar 

  2. Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63(6), 798 (2003)

    Article  ADS  Google Scholar 

  3. Ashgriz, N., Poo, J.Y.: Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183–204 (1990)

    Article  ADS  Google Scholar 

  4. Chen, X.D., Ma, D.J., Khare, P., Yang, V.: Energy and mass transfer during binary droplet collision. In: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 771. Orlando (2011)

  5. Chen, X.D., Ma, D.J., Yang, V.: Collision outcome and mass transfer of unequal-sized droplet collision. In: Proceedings of 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2012)

  6. Dai, M., Schmidt, D.P.: Numerical simulation of head-on droplet collision: effect of viscosity on maximum deformation. Phys. Fluids 17(4), 041701 (2005)

    Article  ADS  Google Scholar 

  7. Driessen, T., Jeurissen, R.: A regularised one-dimensional drop formation and coalescence model using a total variation diminishing (TVD) scheme on a single Eulerian grid. Int. J. Comput. Fluid Dyn. 25(6), 333–343 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Evans, R.: The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979). doi:10.1080/00018737900101365

    Article  ADS  Google Scholar 

  9. Gao, T.C., Chen, R.H., Pu, J.Y., Lin, T.H.: Collision between an ethanol drop and a water drop. Exp. Fluids 38(6), 731–738 (2005)

    Article  Google Scholar 

  10. Geier, M.C., Greiner, A., Korvink, J.G.: Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 73, 066705 (2006)

    Article  ADS  Google Scholar 

  11. Georjon, T.L., Reitz, R.D.: A drop-shattering collision model for multidimensional spray computations. At. Sprays 9(3), 231 (1999)

    Article  Google Scholar 

  12. He, X., Doolen, G.D.: Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107(1–2), 309–328 (2002)

    Article  MATH  Google Scholar 

  13. Inamuro, T., Tajima, S., Ogino, F.: Lattice Boltzmann simulation of droplet collision dynamics. Int. J. Heat Mass Transf. 47(21), 4649–4657 (2004)

    Article  MATH  Google Scholar 

  14. Karlin, I.V., Ferrante, A., Öttinger, H.C.: Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47(2), 182 (1999)

    Article  ADS  Google Scholar 

  15. Karlin, I.V., Lycett-Brown, D., Luo, K.H.: Enhanced lattice Bhatnagar–Gross–Krook method for fluid dynamics simulation. arXiv:1107.3309 (cond-mat.stat-mech) (2011)

  16. Korteweg, D.J.: Sur la forme que prennent les equations du mouvements des fluides si lon tient compte des forces capillaires causes par des variations de densite. Arch. Neerl. Sci. Exact. Nat. Ser. II(6), 1–24 (1901)

    Google Scholar 

  17. Krüger, T., Frijters, S., Günther, F., Kaoui, B., Harting, J.: Numerical simulations of complex fluid–fluid interface dynamics. Eur. Phys. J. Spec. Top. 222, 177–198 (2013)

    Article  Google Scholar 

  18. Kupershtokh, A.L., Medvedev, D.A., Karpov, D.I.: On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 58(5), 965–974 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luo, K.H., Xia, J., Monaco, E.: Multiscale modeling of multiphase flow with complex interactions. J. Multiscale Model. 1(01), 125–156 (2009)

    Article  Google Scholar 

  20. Lycett-Brown, D., Luo, K.H., Liu, R., Lv, P.: Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method. Phys. Fluids 26(2), 023303 (2014)

    Article  ADS  Google Scholar 

  21. Mazloomi, M.A., Chikatamarla, S.S., Karlin, I.V.: Entropic lattice Boltzman method for multiphase flows. Phys. Rev. Lett. 114, 174502 (2015)

    Article  ADS  Google Scholar 

  22. Nijdam, J.J., Guo, B., Fletcher, D.F., Langrish, T.A.G.: Challenges of simulating droplet coalescence within a spray. Dry. Technol. 22(6), 1463–1488 (2004)

    Article  Google Scholar 

  23. Nikolopoulos, N., Nikas, K.S., Bergeles, G.: A numerical investigation of central binary collision of droplets. Comput. Fluids 38(6), 1191–1202 (2009)

    Article  MATH  Google Scholar 

  24. Nikolopoulos, N., Strotos, G., Nikas, K.S., Bergeles, G.: The effect of Weber number on the central binary collision outcome between unequal-sized droplets. Int. J. Heat Mass Transf. 55(7), 2137–2150 (2012)

    Article  Google Scholar 

  25. Orme, M.: Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy Combust. Sci. 23(1), 65–79 (1997)

    Article  Google Scholar 

  26. Qian, J., Law, C.K.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)

    Article  ADS  Google Scholar 

  27. Qian, Y.H., Zhou, Y.: Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation. Europhys. Lett. 42(4), 359–364 (1998)

    Article  ADS  Google Scholar 

  28. Rowlinson, J.R., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982)

    Google Scholar 

  29. Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K., Toschi, F.: Generalized lattice boltzmann method with multirange pseudopotential. Phys. Rev. E 75(2), 026702 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. Shan, X.W., Chen, H.D.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Article  ADS  Google Scholar 

  31. Siebert, D.N., Philippi, P.C., Mattila, K.K.: Consistent lattice Boltzmann equations for phase transitions. Phys. Rev. E 90, 053310 (2014)

    Article  ADS  Google Scholar 

  32. Succi, S.: The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  33. Swift, M.R., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75(5), 830 (1995)

    Article  ADS  Google Scholar 

  34. Tanguy, S., Berlemont, A.: Application of a level set method for simulation of droplet collisions. Int. J. Multiph. Flow 31(9), 1015–1035 (2005)

    Article  MATH  Google Scholar 

  35. Tennison, P.J., Georjon, T.L., Farrell, P.V., Reitz, R.D.: An experimental and numerical study of sprays from a common rail injection system for use in an HSDI diesel engine. Technical report, SAE Technical Paper (1998)

  36. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)

    Article  MATH  ADS  Google Scholar 

  37. van der Waals, J.D.: hermodynamische theorie der capillariteit in de onderstelling van continue dichtheidsverandering. Verhand. Kon. Akad. V Wetensch. Amst. (Sect. 1) 1(8), 1–54 (1893)

    Google Scholar 

  38. Wagner, A.J., Li, Q.: Investigation of Galilean invariance of multi-phase lattice Boltzmann methods. Phys. A 362(1), 105–110 (2006)

    Article  Google Scholar 

  39. Yuan, P., Schaefer, L.: Equations of state in a lattice Boltzmann model. Phys. Fluids 18(4), 042101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (ERC) Advanced Grant No. 291094-ELBM and the ETH Research Grant ETH35-12-2. Computational resources at the Swiss National Super Computing Center, CSCS, were provided under the Grant S492 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Chikatamarla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloomi Moqaddam, A., Chikatamarla, S.S. & Karlin, I.V. Simulation of Droplets Collisions Using Two-Phase Entropic Lattice Boltzmann Method. J Stat Phys 161, 1420–1433 (2015). https://doi.org/10.1007/s10955-015-1329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1329-3

Keywords

Navigation