Skip to main content
Log in

On Fluctuations of Eigenvalues of Random Band Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the fluctuations of linear eigenvalue statistics of random band \(n\times n\) matrices whose entries have the form \(\mathcal {M}_{ij}=b^{-1/2}u^{1/2}(|i-j|/b)\tilde{w}_{ij}\) with i.i.d. \(\tilde{w}_{ij}\) possessing the \((4+\varepsilon )\)th moment, where the function u has a finite support \([-C^*,C^*]\), so that M has only \(2C_*b+1\) nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that \(b/n\rightarrow 0\). Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption \(n>>b>>n^{1/2}\). Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z., Silverstein, J.W.: CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32, 553–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn. Wiley, New York (1995)

  3. Erdös, L., Knowles, A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)

    Article  ADS  MATH  Google Scholar 

  4. Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Delocalization and diffusion profile for random band matrices. Electron. J. Probab. 18(59), 158 (2013)

    Google Scholar 

  5. Evgrafov, M.A.: Analytic Functions. Dover Pubications, Mineola (1978)

  6. Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Benaych-Georges, F., Guionnet, A., Male, C.: Central limit theorems for linear statistics of heavy tailed random matrices. Commun. Math. Phys. 329(2), 641–686 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. I.Jana, K.Saha, A.Soshnikov. Fluctuations of Linear Eigenvalue Statistics of Random Band Matrices arXiv:1412.2445

  9. Khorunzhy, A., Kirsch, W.: On asymptotic expansions and scales of spectral universality in band random matrix ensembles. Commun. Math. Phys. 231, 223–255 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Molchanov, S.A., Pastur, L.A., Khorunzhy, A.M.: Eigenvalue distribution for band random matrices in the limit of their infinite rank. Teor. Matem. Fizika 90, 108–118 (1992)

    Article  Google Scholar 

  11. Li, L., Soshnikov, A.: Central limit theorem for linear statistics of eigenvalues of band random matrices. Random Matrices 2, 04 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(5), 1778–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Najim, J., Yao, J.: Gaussian fluctuations for linear spectral statistics of large random covariance matrices. arXiv:1309.3728

  14. Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices. Mathematical Survives and Monographs, vol. 171. American Mathematical Society: Providence (2011)

  15. O’Rourke, S., Renfrew, D., Soshnikov, A., Vu, V.: Products of independent elliptic random matrices. arXiv:1403.6080

  16. Shcherbina, M.: Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. J. Math. Phys. Anal. Geom. V7(2), 176–192 (2011)

    MathSciNet  Google Scholar 

  17. Shcherbina, M., Tirozzi, B.: Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs. Diluted regime. J. Math. Phys. 53, 1–18 (2012)

    MathSciNet  Google Scholar 

  18. Shcherbina, T.: On the second mixed moment of the characteristic polynomials of the 1D band matrices. Commun. Math. Phys. 328, 45–82 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. Spencer, T.: SUSY statistical mechanics and random band matrices. Lecture notes in Mathematics 2051 (CIME Foundation subseries), Quantum many body system

  20. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shcherbina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbina, M. On Fluctuations of Eigenvalues of Random Band Matrices. J Stat Phys 161, 73–90 (2015). https://doi.org/10.1007/s10955-015-1324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1324-8

Keywords

Navigation