Skip to main content
Log in

Anomalous Energy Transport in FPU-\(\beta \) Chain

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the derivation of a macroscopic fractional diffusion equation describing heat transport in an anharmonic chain. More precisely, we study here the so-called FPU-\(\beta \) chain, which is a very simple model for a one-dimensional crystal in which atoms are coupled to their nearest neighbors by a harmonic potential, weakly perturbed by a quartic potential. The starting point of our mathematical analysis is a kinetic equation: Lattice vibrations, responsible for heat transport, are modeled by an interacting gas of phonons whose evolution is described by the Boltzmann phonon equation. Our main result is the rigorous derivation of an anomalous diffusion equation starting from the linearized Boltzmann phonon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdallah, N.B., Mellet, A., Puel, M.: Fractional diffusion limit for collisional kinetic equations: a hilbert expansion approach. Kinet. Relat. Models 4, 873–900 (2011)

  2. Abdallah, N.B., Mellet, A., Puel, M.: Anomalous diffusion limit for kinetic equations with degenerate collision frequency. Math. Models Methods Appl. Sci. 21(11), 2249–2262 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Allaire, G., Golse, F.: Transport et diffusion. Lecture notes, Ecole polytechnique (in French) (2013)

  4. Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1–2), 323–344 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  5. Basile, G., Bernardin, C., Olla, S.: Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Phys. Rev. Lett. 96(20), 204303 (2006)

    Article  ADS  Google Scholar 

  6. Basile, G., Bernardin, C., Olla, S.: Thermal conductivity for a momentum conservative model. Commun. Math. Phys. 287(1), 67–98 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Basile, G., Olla, S., Spohn, H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195(1), 171–203 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berman, G.P., Izrailev, F.M.: The fermi-pasta-ulam problem: fifty years of progress. Chaos: an interdisciplinary. J. Nonlinear Sci. 15(1), 015104 (2005)

    MathSciNet  Google Scholar 

  9. Bernardin, C., Gonçalves, P., Jara, M.: 3/4 Fractional superdiffusion of energy in a system of harmonic oscillators perturbed by a conservative noise. ArXiv e-prints (2014)

  10. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: A challenge for theorists. arXiv preprint math-ph/0002052 (2000)

  11. Bricmont, J., Kupiainen, A.: Approach to equilibrium for the phonon Boltzmann equation. Commun. Math. Phys. 281(1), 179–202 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Debye, P.: Vorträge über die kinetische theorie der wärme. Teubner (1914)

  13. Delfini, L., Lepri, S., Livi, R., Politi, A.: Anomalous kinetics and transport from 1d self-consistent mode-coupling theory. J. Stat. Mech. Theory Exp. 2, P02007 (2007)

    Google Scholar 

  14. Gerschenfeld, A., Derrida, B., Lebowitz, J.L.: Anomalous Fourier’s law and long range correlations in a 1D non-momentum conserving mechanical model. J. Stat. Phys. 141(5), 757–766 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Hittmeir, S., Merino-Aceituno, S: Kinetic derivation of fractional stokes and stokes-fourier systems. arXiv:1408.6400 (2014)

  16. Jara, M., Komorowski, T., Olla, S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jara, M., Komorowski, T., Olla, S.: Superdiffusion of energy in a chain of harmonic oscillators with noise. ArXiv e-prints (2014)

  18. Lepri, S., Livi, R., Politi, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896 (1997)

    Article  ADS  Google Scholar 

  19. Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43, 271 (1998)

    Article  ADS  Google Scholar 

  20. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lepri, S., Livi, R., Politi, A.: Universality of anomalous one-dimensional heat conductivity. Phys. Rev. 68, 067102 (2003)

    Google Scholar 

  22. Lepri, S., Livi, R., Politi, A.: Studies of thermal conductivity in fermipastaulam-like lattices. Chaos 15, 015118 (2005)

    Article  ADS  Google Scholar 

  23. Lepri, S., Livi, R., Politi, A.: Studies of thermal conductivity in fermi-pasta-ulam-like lattices. Chaos: an interdisciplinary. J. Nonlinear Sci. 15(1), 015118 (2005)

    Google Scholar 

  24. Lukkarinen, J., Spohn, H.: Anomalous energy transport in the fpu-\(\beta \) chain. Commun. Pure Appl. Math. 61(12), 1753–1786 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mellet, A.: Fractional diffusion limit for collisional kinetic equations: a moments method. Indiana Univ. Math. J. 59(4), 1333–1360 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199(2), 493–525 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mouhot, C.: Lecture Notes: Mathematical Topics in Kinetic Theory. Chap. 4: The linear Boltzmann equation (2013)

  28. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89 (2002)

  29. Olla, S.: Energy diffusion and superdiffusion in oscillators lattice networks. New Trends in Mathematical Physics, pp. 539–547. Springer, New York (2009)

    Chapter  Google Scholar 

  30. Peierls, R.: Zur kinetischen theorie der wärmeleitung in kristallen. Annalen der Physik 395(8), 1055–1101 (1929)

    Article  ADS  Google Scholar 

  31. Pereverzev, A.: Fermi-Pasta-Ulam \(\beta \) lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68(5), 056124 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  32. Shimada, T., Murakami, T., Yukawa, S., Saito, K., Ito, N.: Simulational study on dimensionality dependence of heat conduction. J. Phys. Soc. Jpn. 69(10), 3150–3153 (2000)

    Article  ADS  Google Scholar 

  33. Spohn, H.: Collisional invariants for the phonon boltzmann equation. J. Stat. Phys. 124(5), 1131–1135 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Spohn, H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124(2–4), 1041–1104 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Spohn, H.: On the Boltzmann equation for weakly nonlinear wave equations. Boltzmann’s Legacy. ESI Lectures in Mathematics and Physics, pp. 145–159. European Mathematical Society, Zürich (2008)

    Chapter  Google Scholar 

  36. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Kinetic Research Network (KI-Net) under the NSF Grant No. RNMS #1107444. A.M. is partially supported by NSF Grant DMS-1201426. S.M thanks the University of Maryland and CSCAMM (Center for Scientific Computation and Mathematical Modeling) for their hospitality; the Cambridge Philosophical Society and Lucy Cavendish College (University of Cambridge) for their financial support. Thanks to Clément Mouhot from the University of Cambridge for his help and support. Thanks to Herbert Spohn from Technische Universität München for useful discussions. S.M is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/H023348/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Mellet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellet, A., Merino-Aceituno, S. Anomalous Energy Transport in FPU-\(\beta \) Chain. J Stat Phys 160, 583–621 (2015). https://doi.org/10.1007/s10955-015-1273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1273-2

Keywords

Navigation