Renormalization Fixed Point of the KPZ Universality Class


The one dimensional Kardar–Parisi–Zhang universality class is believed to describe many types of evolving interfaces which have the same characteristic scaling exponents. These exponents lead to a natural renormalization/rescaling on the space of such evolving interfaces. We introduce and describe the renormalization fixed point of the Kardar–Parisi–Zhang universality class in terms of a random nonlinear semigroup with stationary independent increments, and via a variational formula. Furthermore, we compute a plausible formula the exact transition probabilities using replica Bethe ansatz. The semigroup is constructed from the Airy sheet, a four parameter space-time field which is the Airy\(_2\) process in each of its two spatial coordinates. Minimizing paths through this field describe the renormalization group fixed point of directed polymers in a random potential. At present, the results we provide do not have mathematically rigorous proofs, and they should at most be considered proposals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\). Phys. Rev. Lett. 105, 090603 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154, 305–326 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  6. 6.

    Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  7. 7.

    Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Compositio Math., to appear. arXiv:1308.3475

  8. 8.

    Borodin, A., Ferrari, P.L., Prähofer, M.: luctuations in the discrete TASEP with periodic initial configurations and the \({\rm Airy}_1\) process. Int. Math. Res. Papers 2007, rpm002 (2007)

    Google Scholar 

  9. 9.

    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  10. 10.

    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for \(q\)-TASEP and ASEP. Ann. Probab. 42, 2314–2382 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Eur. Phys. Lett. 90, 20002 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Corwin, I., Hammond, A.: KPZ line ensemble. arXiv:1312.2600

  14. 14.

    Corwin, I., Liu, Z., Wong, D.: Fluctuations of TASEP and LPP with general initial data. In preparation

  15. 15.

    Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ growth. Ann. Inst. H. Poin. 48, 134–150 (2012)

    ADS  Article  MATH  Google Scholar 

  16. 16.

    Corwin, I., Quastel, J., Remenik, D.: Continuum statistics of the Airy\(_2\) process. Commun. Math. Phys. 317, 347–362 (2013)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  17. 17.

    Dembo, A., Tsai, L.-C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. arXiv:1302.5760

  18. 18.

    Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech. P07010 (2010)

  19. 19.

    Dotsenko, V.: \(N\)-point free energy distribution function in one dimensional random directed polymers. Condens. Matter Phys. 17, 33003 (2014)

    Article  Google Scholar 

  20. 20.

    Ferrari, P.L., Spohn, H.: Random Growth Models. arXiv:1003.0881

  21. 21.

    Forster, D., Nelson, D., Stephen, M.J.: Large-distance and long time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)

    MathSciNet  ADS  Article  Google Scholar 

  22. 22.

    Huse, D.A., Henley, C.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708 (1985)

    ADS  Article  Google Scholar 

  23. 23.

    Imamura, T., Sasamoto, T., Spohn, H.: On the equal time two-point distribution of the one-dimensional KPZ equation by replica. J. Phys. A 46, 355002 (2013)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    ADS  Article  MATH  Google Scholar 

  25. 25.

    Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    ADS  Article  MATH  Google Scholar 

  26. 26.

    Krug, H., Spohn, H.: Kinetic roughenning of growing surfaces. In: Godrèche, C. (ed.) Solids Far from Equilibrium. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  27. 27.

    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MATH  Google Scholar 

  28. 28.

    Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. P03020 (2011)

  29. 29.

    Prolhac, S., Spohn, H.: Two-point generating function of the free energy for a directed polymer in a random medium. J. Stat. Mech. P01031 (2011)

  30. 30.

    Quastel, J.: Introduction to KPZ. In: Current Developments in Mathematics, 2011. Int. Press, Somerville, MA, 2011.

  31. 31.

    Quastel, J., Remenik, D.: Local behavior and hitting probabilities of the Airy 1 process. Probab. Theory Relat. Fields 157, 605–634 (2012)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Quastel, J., Remenik, D.: Airy processes and variational problems. In: Topics in Percolative and Disordered Systems, Springer Proceedings in Mathematics & Statistics, 2014, vol. 69, pp. 121171.l. arXiv:1301.0750

  33. 33.

    Schutz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)

    MathSciNet  ADS  Article  Google Scholar 

  34. 34.

    Takeuchi, K.: Experimental approaches to universal out-of-equilibrium scaling laws: turbulent liquid crystal and other developments. J. Stat. Mech. 1, P01006 (2014)

    Article  Google Scholar 

  35. 35.

    Takeuchi, K., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)

    ADS  Article  Google Scholar 

  36. 36.

    Takeuchi, K., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. (Nat.) 1, 34 (2011)

    ADS  Google Scholar 

  37. 37.

    Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  38. 38.

    Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    MathSciNet  ADS  Article  MATH  Google Scholar 

Download references


The authors would like to thank H. Spohn, J. Baik, E. Cator, E. Corwin, K. Khanin, B.Valko, B.Virag, A. Borodin, the special semesters on Random Matrix Theory and its Applications at MSRI, and Dynamics and Transport in Disordered Media at the Fields Institute. IC was partially supported by the NSF PIRE Grant OISE-07-30136, the Grant DMS-1208998 as well as by Microsoft Research and MIT through the Schramm Memorial Fellowship, by the Clay Mathematics Institute through the Clay Research Fellowship, by the Institute Henri Poincare through the Poincare Chair, and by the Packard Foundation through a Packard Fellowships for Science and Engineering. JQ is supported by the NSERC. DR was partially supported by NSERC, by a Fields-Ontario Postdoctoral Fellowship, by Fondecyt Grant 1120309, by Conicyt Basal-CMM, and by Programa Iniciativa Científica Milenio Grant number NC130062 through Nucleus Millenium Stochastic Models of Complex and Disordered Systems.

Author information



Corresponding author

Correspondence to Ivan Corwin.

Appendix: Two-Point Distribution Function for the KPZ Fixed Point with Flat Initial Condition

Appendix: Two-Point Distribution Function for the KPZ Fixed Point with Flat Initial Condition

The goal of this appendix is to obtain a formula for the two-point distribution function of the KPZ fixed point with flat initial condition based on the formulas proposed in Sect. 3, and compare it with the two-point distribution function for the Airy\(_1\) process. In (13) we need to take

$$\begin{aligned} f=f_L=0\cdot \mathbf {1}_{[-L,L]}+\infty \cdot \mathbf {1}_{[-L,L]^\mathrm{c}}\qquad \text {and}\qquad s(x)= {\left\{ \begin{array}{ll} s_1 &{} \text {if }\, x=0,\\ s_2 &{} \text {if } \, x=u,\\ \infty &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

Here, \(L\) is a positive real number introduced because, we recall, in (13) \(f\) is supposed to be infinite outside some compact set. Our interest is the case \(L\rightarrow \infty \).

Using these choices, what we want to compute is

$$\begin{aligned} \lim _{L\rightarrow \infty }\mathbb {P}\!\left( T_2f_L(0)\le s_0,\,T_2f_L(r)\le s_1\right) . \end{aligned}$$

We have chosen here to take \(T_t\) with \(t=2\) to simplify our computations. Observe that in order to use the KPZ fixed point formula to compute this probability we need to use the discrete version for the part involving \(s(x)\) and the continuum version for the flat initial condition, but one can check that this does not introduce any difficulty.

Going back to the formula, note that in our case \(L_s=0\), \(R_s=r\) and \(-L_c=R_c=L\). Observe also that, since the function \(c\) in (13) is defined from \(f\) via \(f(y)=-(t/2)^{1/3}(c(y)-(y-L_s)^2)\) and we are taking \(t=2\), we have \(c(y)=y^2\). Therefore the KPZ fixed point formula reads, in our case,

$$\begin{aligned} \mathbb {P}\!\left( T_2f_L(0)\le s_0,\,T_2f_L(r)\le s_1\right) =\det (I-K_{\mathrm{Ai}}+G_LK_{\mathrm{Ai}}), \end{aligned}$$


$$\begin{aligned} G_L(x,y)=\iint du\,dm\left[ \bar{P}_{s_1+m+u}e^{-rH}\bar{P}_{s_2+m+u}e^{rH}\right] \!(u,x)\frac{\partial }{\partial m}\left[ e^{LH}\Theta ^{s^2-m}_{[-L,L]}e^{LH}\right] \!(y,u), \end{aligned}$$

where \(\Theta ^{s^2-m}_{[-L,L]}\) is exactly the same operator that gives GOE in [16] (the exact formula will not be relevant). Note that

$$\begin{aligned} \bar{P}_{a_1+b}e^{-rH}\bar{P}_{a_2+b}e^{rH}(z_1,z_2)=\bar{P}_{a_1}e^{-rH}\bar{P}_{a_2}e^{rH}(z_1-b,z_2-b), \end{aligned}$$

so integrating by parts we obtain

$$\begin{aligned} G_L(x,y)= & {} \iint dm\,du\left[ \delta _{s_1+m}e^{-rH}\bar{P}_{s_2+m}e^{rH}+\bar{P}_{s_1+m}e^{-rH}\delta _{s_2+m}e^{rH}\right] \!(0,x-u)\\&\quad \cdot \left[ e^{LH}\Theta ^{s^2-m}_{[-L,L]}e^{LH}\right] \!(y,u) \end{aligned}$$

The arguments in [16] show that \(K_{\mathrm{Ai}}e^{LH}\Theta ^{s^2-m}_{[-L,L]}e^{LH}K_{\mathrm{Ai}}\) converges to \(K_{\mathrm{Ai}}(I-\varrho _{-m})K_{\mathrm{Ai}}\) in trace class norm as \(L\rightarrow \infty \), where

$$\begin{aligned} \varrho _a(x,y)=\delta _{x+y=2a}. \end{aligned}$$

Hence one expects

$$\begin{aligned} \lim _{L\rightarrow \infty }\mathbb {P}\!\left( T_2f_L(0)\le s_0,\,T_2f_L(r)\le s_1\right) =\det (I-K_{\mathrm{Ai}}-GK_{\mathrm{Ai}}), \end{aligned}$$


$$\begin{aligned}&G(x,y)\\&\quad =\iint du\,dm\left[ \delta _{s_1+m}e^{-rH}\bar{P}_{s_2+m}e^{rH}+\bar{P}_{s_1+m}e^{-rH}\delta _{s_2+m}e^{rH}\right] (0,x-u) [I-\varrho _{-m}](y,u). \end{aligned}$$

Write \(G=\bar{G}-\Gamma \), where the two terms come from \(I\) and \(\varrho _{-m}\) in the last expression. We will first look at the term involving \(I\). It is given by

The last integral equals \(e^{-rH}P_{s_2-s_1}e^{rH}(0,x-y)\), and thus \(\bar{G}=I\). Then

$$\begin{aligned} \det \!\big (I-K_{\mathrm{Ai}}+GK_{\mathrm{Ai}})=\det \!\big (I-\Gamma K_{\mathrm{Ai}}\big ). \end{aligned}$$

Next we look at \(\Gamma \). We have

$$\begin{aligned} \Gamma (x,y)= & {} \int du\,e^{-rH}\bar{P}_{s_2-s_1}e^{rH}(0,x-u)\varrho _{s_1}(y,u)\\&\quad +\iint dm\,du\,\bar{P}_{s_1+m}e^{-rH}(0,s_2+m)e^{rH}(s_2+m,x-u)\varrho _{-m}(y,u). \end{aligned}$$

Write \(\Gamma \) as \(G_1+G_2\). Then \(G_1(x,y)=e^{-rH}\bar{P}_{s_2-s_1}e^{rH}(0,x+y-2s_1)\). By the Baker-Campbell-Hausdorff formula (BCH) we have

$$\begin{aligned} e^{-r\Delta }e^{-rH}&=e^{r^3/3}e^{r^2\nabla }e^{-r\xi }\\ e^{rH}e^{r\Delta }&=e^{-r^3/3}e^{r\xi }e^{-r^2\nabla }. \end{aligned}$$

Here \(\xi \) denotes the independent variable, so that \((e^{r\xi }f)(x)=e^{rx}f(x)\). Using this we have

$$\begin{aligned} G_1(x,y)&=e^{r\Delta }e^{-r\Delta }e^{-rH}\bar{P}_{s_2-s_1}e^{rH}e^{r\Delta }e^{-r\Delta }(0,x+y-2s_1)\\&=e^{r\Delta }e^{r^3/3}e^{r^2\nabla }e^{-r\xi }\bar{P}_{s_2-s_1}e^{-r^3/3}e^{r\xi }e^{-r^2\nabla }e^{-r\Delta }(0,x+y-2s_1)\\&=e^{r\Delta }\bar{P}_{s_2-s_1-r^2}e^{-r\Delta }(0,x+y-2s_1), \end{aligned}$$

where in the last equality we have used the identities \(e^{-r\xi }\bar{P}_{a}e^{r\xi }=\bar{P}_a\) and \(e^{r^2\nabla }\bar{P}_ae^{-r^2\nabla }=\bar{P}_{a-r^2}\). Here, and below, we are writing expressions involving \(e^{-r\Delta }\) with \(r>0\). This is justified as in [31] because this operator is always applied after \(B_0\) (or \(K_{\mathrm{Ai}}=B_0P_0B_0\)), which is given by

$$\begin{aligned} B_0(x,y)=\mathrm{Ai}(x+y). \end{aligned}$$

The kernel \(G_2\) is a bit more complicated. By BCH we have

$$\begin{aligned} e^{a\nabla }e^{tH}=e^{at}e^{tH}e^{a\nabla }. \end{aligned}$$

Using this we may write

$$\begin{aligned} e^{-rH}(0,s_2+m)=e^{-rH}e^{-s_2\nabla }(0,m)=e^{-s_2r}e^{-s_2\nabla }e^{-rH}(0,m) \end{aligned}$$

and, similarly,

$$\begin{aligned} e^{rH}(s_2+m,x+y+2m)&=e^{s_2\nabla }e^{rH}e^{-2m\nabla }(m,x+y)=e^{2mr}e^{(-2m+s_2)\nabla }e^{rH}(m,x+y)\\&=e^{2mr}e^{s_2\nabla }e^{rH}(-m,x+y)=e^{(2m+s_2)r}e^{rH}(-m,x+y-s_2), \end{aligned}$$

so that

$$\begin{aligned} G_2(x,y)=\int _{-s_1}^\infty dm\,e^{-rH}(-s_2,m)e^{rm}e^{rH}(-m,x+y-s_2)e^{rm}. \end{aligned}$$

Observe that the first factor equals \(e^{-rH}e^{r\xi }(-s_2,m)\) while the second one equals \(e^{-r\xi }e^{rH}(-m,x+y-s_2)\). By BCH again one has \(e^{-r\xi }e^{rH}=e^{-r\Delta }e^{-r^2\nabla }e^{-r^3/3}\) and \(e^{-rH}e^{r\xi }=e^{r\Delta }e^{r^2\nabla }e^{r^3/3}\), so using this and the symmetry of the heat kernel above gives

$$\begin{aligned} G_2(x,y)&=\int _{-s_1}^\infty dm\,e^{r\Delta }(-s_2+r^2,m)e^{-r\Delta }(-m,x+y-s_2+r^2)\\&=\int _{-\infty }^{s_1} dm\,e^{r\Delta }(s_2-r^2,m)e^{-r\Delta }(m,x+y-s_2+r^2)\\&=e^{r\Delta }\bar{P}_{s_1-s_2+r^2}e^{-r\Delta }(0,x+y-2s_2+2r^2). \end{aligned}$$

Putting the formulas for \(G_1\) and \(G_2\) together with (28) and (29), after taking \(L\rightarrow \infty \), the conclusion is that

$$\begin{aligned} \mathbb {P}\!\left( T_2f(0)\le s_0,\,T_2f(r)\le s_1\right) =\det \!\big (I-\Gamma K_{\mathrm{Ai}}\big ), \end{aligned}$$


$$\begin{aligned} \Gamma (x,y)=e^{r\Delta }\bar{P}_{s_2-r^2-s_1}e^{-r\Delta }(0,x+y-2s_1) +e^{r\Delta }\bar{P}_{s_1-s_2+r^2}e^{-r\Delta }(0,x+y-2s_2+2r^2). \end{aligned}$$

Observe that the \(r^2\) corresponds just to a parabolic shift, so writing \(\tilde{s}_1=s_1=s_1+0^2\) and \(\tilde{s}_2=s_2+r^2\) we get

$$\begin{aligned}&\Gamma (x,y)=\Gamma _1(x,y)+\Gamma _2(x,y)=e^{r\Delta }\bar{P}_{\tilde{s}_2-\tilde{s}_1}e^{-r\Delta }(0,x+y-2\tilde{s}_1)\\&\quad \quad \quad \quad \quad +\,e^{r\Delta }\bar{P}_{\tilde{s}_1-\tilde{s}_2}e^{-r\Delta }(0,x+y-2\tilde{s}_2). \end{aligned}$$

This could already be considered a working formula.

What comes next is trying to put the formula we got in a form which makes the comparison with the Airy\(_1\) formula easier. Writing \(K_{\mathrm{Ai}}=B_0P_0B_0\) and using the cyclic property of the determinant we have

$$\begin{aligned} \det (I-\Gamma K)=\det (I-P_0B_0\Gamma B_0). \end{aligned}$$


$$\begin{aligned} B_0\Gamma _1B_0(x,y)=\iint dz_1\,dz_2\,\mathrm{Ai}(x+z_1)e^{r\Delta }\bar{P}_{\tilde{s}_2-\tilde{s}_1}e^{-r\Delta }(0,z_1+z_2-2\tilde{s}_1)\mathrm{Ai}(z_2+y). \end{aligned}$$

Shifting \(z_1\) to \(z_1-x\) and \(z_2\) to \(z_2-z_1+x\) gives

$$\begin{aligned} B_0\Gamma _1B_0(x,y)=\iint dz_1\,dz_2\,\mathrm{Ai}(z_1)e^{r\Delta }\bar{P}_{\tilde{s}_2-\tilde{s}_1}e^{-r\Delta }(0,z_2-2\tilde{s}_1)\mathrm{Ai}(z_2-z_1+x+y). \end{aligned}$$

But \(\int \! dz\mathrm{Ai}(z)\mathrm{Ai}(a-z)=2^{-1/3}\mathrm{Ai}(2^{-1/3}a)\), so letting

$$\begin{aligned} \widetilde{B}_0(x,y)=2^{-1/3}\mathrm{Ai}(2^{-1/3}(x+y)) \end{aligned}$$

we have deduced that

$$\begin{aligned} B_0\Gamma _1B_0(x,y)=\Gamma _1\widetilde{B}_0(0,x+y), \end{aligned}$$

and of course the same holds with \(\Gamma _2\) instead. Letting

$$\begin{aligned} \Lambda (x,y)=\Gamma \widetilde{B}_0(0,x+y) \end{aligned}$$

we have

$$\begin{aligned} \mathbb {P}\!\left( T_2f(0)\le \tilde{s}_0,\,T_2f(r)\le \tilde{s}_1\right) =\det \!\big (I-P_0\Lambda \big ). \end{aligned}$$

Finally we change variables \(x\mapsto 2^{1/3}x\), \(y\mapsto 2^{1/3}y\) in the determinant. This changes the kernel \(P_0\Lambda (x,y)\) to \(2^{1/3}P_0\Lambda (2^{1/3}x,2^{1/3}y)\). Writing this explicitly for the term involving \(\Gamma _1\) (and dropping the \(P_0\) for a moment) gives

$$\begin{aligned}&2^{1/3}\int dw\,\Gamma _1(0,w)\widetilde{B}_0(w,2^{1/3}x+2^{1/3}y)\\&\quad =2^{1/3}\int dz\, e^{r\Delta }(0,z)P_{\tilde{s}_2-\tilde{s}_1}e^{-r\Delta }\widetilde{B}_0(z,2^{1/3}x+2^{1/3}y)\\&\quad =2^{2/3}\int dz\,e^{r\Delta }(0,2^{1/3}z)P_{\tilde{s}_2-\tilde{s}_1}e^{-r\Delta }\widetilde{B}_0(2^{1/3}z,2^{1/3}x+2^{1/3}y). \end{aligned}$$

Now \(e^{r\Delta }(0,2^{1/3}z)=(4\pi r)^{-1/2}e^{-(2^{1/3}z)^2/4r}=2^{-1/3}e^{2^{-2/3}r\Delta }(0,z)\). Likewise one can check that \(e^{-r\Delta }\widetilde{B}_0(2^{1/3}z,2^{1/3}x+2^{1/3}y)=2^{-1/3}e^{-2^{-2/3}r\Delta }B_0(z,x+y)\). Hence the last integral can be rewritten as \(e^{2^{-2/3}r\Delta }P_{2^{-1/3}(\tilde{s}_2-\tilde{s}_1)}e^{-2^{-2/3}r\Delta }B_0\). The same of course holds for the term with \(\Gamma _2\). Hence the final formula becomes

$$\begin{aligned} \mathbb {P}\!\left( T_2f(0)\le s_1,\,T_2f(r)\le s_2+r^2\right) =\det \!\big (I-P_0\widetilde{\Lambda }\big ), \end{aligned}$$

where \(\widetilde{\Lambda }(x,y)=\widetilde{\Gamma }B_0(0,x+y)\) and

$$\begin{aligned} \widetilde{\Gamma }(x,y)= & {} e^{2^{-2/3}r\Delta }\bar{P}_{2^{-1/3}s_2-2^{-1/3}s_1}e^{-2^{-2/3}r\Delta }(0,x+y-2^{2/3}s_1)\\&\quad +\,e^{2^{-2/3}r\Delta }\bar{P}_{2^{-1/3}s_1-2^{-1/3}s_2}e^{-2^{-2/3}r\Delta }(0,x+y-2^{2/3}s_2). \end{aligned}$$

In light of the version of the Airy\(_1\) formula proved in [31]

$$\begin{aligned}&\mathbb {P}\!\left( \mathcal {A}_1(0)\le 2^{-1/3}s_1,\mathcal {A}_1(2^{-2/3}r)\le 2^{-1/3}s_2\right) \nonumber \\&\quad =\det \!\big (I-B_0+\bar{P}_{2^{-1/3}s_1}e^{2^{-2/3}r\Delta }\bar{P}_{2^{-1/3}s_2}e^{-2^{-2/3}r\Delta }B_0\big ) \end{aligned}$$

this suggests the conjecture

$$\begin{aligned} \mathbb {P}\!\left( T_2f(0)\le s_1,\,T_2f(r)\le s_2+r^2\right) =\mathbb {P}\!\left( \mathcal {A}_1(0)\le 2^{-1/3}s_1,\mathcal {A}_1(2^{-2/3}r)\le 2^{-1/3}s_2\right) . \end{aligned}$$

Unfortunately, we have not been able to check the equality of the determinants in (30) and (31), and in fact it is not at all clear whether the equality is true. The kernels in the two formulas have many similarities, but observe in particular how the variables \(x,y\) appear in an odd position in \(\widetilde{\Lambda }(x,y)\).

The formula (30) does satisfy some basic reality checks. The kernel \(\widetilde{\Lambda }\) is symmetric in \(s_1,s_2\), which implies the same symmetry for the two-point function. Taking \(s_1\rightarrow \infty \) yields \(F_\mathrm{GOE}(4^{1/3}s_2)\), which is the one-point marginal of \(2^{1/3}\mathcal {A}_1(\cdot )\). Similarly, setting \(r=0\) yields \(F_\mathrm{GOE}(4^{1/3}(s_1\wedge s_2))\). These three facts can be checked more or less directly from (30). An additional, more complicated, reality check which can be performed is the following (we will omit the argument, which is not hard but involves a relatively long computation). Fix some \(s\in \mathbb {R}\) and let \(g(r)=\mathbb {P}\big (\mathcal {A}_1(0)\le 2^{-1/3}s,\mathcal {A}_1(2^{-2/3}r)\le 2^{-1/3}s\big )\) and \(\tilde{g}(r)= \mathbb {P}\big (T_2f(0)\le s,\,T_2f(r)\le s+r^2\big )\). Then \(g'(0)=\tilde{g}'(0)\).

We have also performed some limited numerics—yet they do not give a definitive answer as to the validity (or lack thereof) of this equality.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corwin, I., Quastel, J. & Remenik, D. Renormalization Fixed Point of the KPZ Universality Class. J Stat Phys 160, 815–834 (2015).

Download citation


  • KPZ equation
  • KPZ universality class
  • KPZ fixed point
  • Airy sheet