Skip to main content
Log in

Lifschitz Tails for Random Schrödinger Operator in Bernoulli Distributed Potentials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper presents an elementary proof of Lifschitz tail behavior for random discrete Schrödinger operators with a Bernoulli-distributed potential. The proof approximates the low eigenvalues by eigenvalues of sine waves supported where the potential takes its lower value. This is motivated by the idea that the eigenvectors associated to the low eigenvalues react to the jump in the values of the potential as if the jump were infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benderskiĭ, M.M., Pastur, L.A.: The spectrum of the one-dimensional Schrödinger equation with random potential. Mat. Sb. (N.S.) 82(124), 273–284 (1970)

    MathSciNet  Google Scholar 

  2. Bishop, M., Wehr, J.: Ground state energy of the one-dimensional discrete random Schrödinger operator with Bernoulli potential. J. Stat. Phys. 147, 529–541 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Biskup, M., König, W.: Long time tails in the parabolic anderson model with bounded potential. Ann. Probab. 29, 636–682 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Durrett, R.: Probability: Theory and Examples. Cambridge series in statistical and probabilistic mathematics, 4th edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  5. Friedberg, R., Luttinger, J.M.: Density of electronic energy levels in disordered systems. Phys. Rev. B 12(10), 4460–4474 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  6. Fukushima, M.: On the spectral distribution of a disordered system and the range of a random walk. Osaka J. Math. 11, 73–85 (1974)

    MATH  MathSciNet  Google Scholar 

  7. Fukushima, M., Nagai, H., Nakao, S.: On an asymptotic property of spectra of a random difference operator. Proc. Jpn. Acad. 51, 100–102 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kirsch, W., Simon, B.: Lifshitz tails for periodic plus random potentials. J. Stat. Phys. 42(5–6), 799–808 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Kirsch, W.: An invitation to random Schrödinger operators. In: Random Schrödinger operators, Panor. Synthèses, vol. 25 , pp. 1–119. French Mathematical Society, Paris. With an appendix by Frédéric Klopp (2008)

  10. Kirsch, W., Martinelli, F.: Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians. Commun. Math. Phys. 89(1), 27–40 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Lax, P.: Functional Analysis. Pure and Applied Mathematics (New York). Wiley, New York (2002)

    Google Scholar 

  12. Lifshitz, I.M.: Energy spectrum structure and quantum states of disordered condensed systems. Sov. Phys. Uspekhi 7(4), 549 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  13. Luttinger, J.M.: New variational method with applications to disordered systems. Phys. Rev. Lett. 37(10), 609–612 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  14. Nagai, H.: On an exponential character of the spectral distribution function of a random difference operator. Osaka J. Math. 14(1), 111–116 (1977)

    MATH  MathSciNet  Google Scholar 

  15. Nakao, S.: On the spectral distribution of the Schrödinger operator with random potential. Jpn. J. Math. (N.S.) 3(1), 111–139 (1977)

    MATH  MathSciNet  Google Scholar 

  16. Nieuwenhuizen, ThM, Luck, J.M.: Singular behavior of the density of states and the Lyapunov coefficient in binary random harmonic chains. J. Stat. Phys. 41(5–6), 745–771 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  17. Nieuwenhuizen, ThM, Luck, J.M., Canisius, J., Van Hemmen, J.L., Ventevogel, W.J.: Special frequencies and Lifshitz singularities in binary random harmonic chains. J. Stat. Phys. 45(3–4), 395–417 (1986)

    Article  ADS  Google Scholar 

  18. Nieuwenhuizen, ThM, Luck, J.M.: Lifshitz tails and long-time decay in random systems with arbitrary disorder. J. Stat. Phys 52(1–2), 1–22 (1988)

    MATH  MathSciNet  ADS  Google Scholar 

  19. Pastur, L.A.: The distribution of eigenvalues of the Schrödinger equation with a random potential. Funkc. Anal. i Priložen. 6(2), 93–94 (1972)

    MathSciNet  Google Scholar 

  20. Romerio, M., Wreszinski, W.: On the Lifschitz singularity and the tailing in the density of states for random lattice systems. J. Stat. Phys. 21(2), 169–179 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  21. Schulz-Baldes, H.: Lifshitz tails for the 1D Bernoulli-Anderson model. Markov Process. Relat. Fields 9(4), 795–802 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Simon, B.: Lifschitz tails for the Anderson model. J. Stat. Phys. 38(1–2), 65–76 (1985)

    Article  ADS  Google Scholar 

  23. Stollmann, P.: Lifshitz asymptotics via linear coupling of disorder. Math. Phys. Anal. Geom. 2(3), 279–289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank R. Sims, L. Friedlander, and K.McLaughlin, A. Fedorenk for useful discussions. M. Bishop and J. Wehr were partly supported by NSF Grant DMS 0623941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bishop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, M., Borovyk, V. & Wehr, J. Lifschitz Tails for Random Schrödinger Operator in Bernoulli Distributed Potentials. J Stat Phys 160, 151–162 (2015). https://doi.org/10.1007/s10955-015-1242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1242-9

Keywords

Navigation