Advertisement

Journal of Statistical Physics

, Volume 159, Issue 4, pp 958–971 | Cite as

Examples of DLR States Which are Not Weak Limits of Finite Volume Gibbs Measures with Deterministic Boundary Conditions

  • Loren CoquilleEmail author
Article

Abstract

We review what is known about the structure of the set of weak limiting states of the Ising and Potts models at low enough temperature, and in particular we prove that the mixture \(\frac{1}{2}(\mu ^\pm +\mu ^\mp )\) of two reflection-symmetric Dobrushin states of the 3-dimensional Ising model at low enough temperature is a Gibbs state which is not a limit of finite-volume measures with deterministic boundary conditions. Finally we point out what the issues are in order to extend the analysis to the Potts model, and give a few conjectures.

Keywords

Gibbs states Ising model Potts model Boundary conditions 

Mathematics Subject Classification

82B05 82B20 82B26 

Notes

Acknowledgments

I am grateful to A. van Enter for encouraging me to work on this question, and for valuable comments and suggestions. I also thank Y. Velenik for his advice, a stimulating discussion and a few references, A. Bovier for mentioning reference [3] to me, and V. Beffara for the simulations of Figs. 2 and 3. I am indebted to Y. Higuchi for pointing out reference [33]. This research was supported by the German Research Foundation (DFG) and the Hausdorff Center for Mathematics (HCM).

References

  1. 1.
    Abraham, D.B., Reed, P.: Interface profile of the Ising ferromagnet in two dimensions. Commun. Math. Phys. 49, 35–46 (1976)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Aizenman, M.: Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Commun. Math. Phys. 73, 83–94 (1980)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Albeverio, S., Zegarliński, B.: Markov Global property in quantum field theory and statistical mechanics: a review on results and problems, in Ideas and methods in quantum and statistical physics (Oslo : Cambridge Univ. Press, Cambridge 1992, 331–369 (1988)Google Scholar
  4. 4.
    Alfaro, M., Conger, M., Hodges, K.: The structure of singularities in \(\Phi \)-minimizing networks in \(\mathbb{R}^{2}\). Pacific J. Math. 149, 201–210 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodineau, T.: Translation invariant Gibbs states for the Ising model. Probab. Theory Relat. Fields 135, 153–168 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bodineau, T., Giacomin, G., Velenik, Y.: On entropic reduction of fluctuations. J. Stat. Phys. 102, 1439–1445 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bodineau, T., Ioffe, D., Velenik, Y.: Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys. 41, 1033–1098 (2000). (Probabilistic techniques in equilibrium and nonequilibrium statistical physics)CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    Campanino, M., Ioffe, D., Velenik, Y.: Fluctuation theory of connectivities for subcritical random cluster models. Ann. Probab. 36, 1287–1321 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cerf, R., Pisztora, Á.: Phase coexistence in Ising, Potts and percolation models. Ann. Inst. H. Poincaré Probab. Stat. 37, 643–724 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    Černý, J., Kotecký, R.: Interfaces for random cluster models. J. Stat. Phys. 111, 73–106 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Coquille, L., Duminil-Copin, H., Ioffe, D., Velenik, Y.: On the Gibbs states of the noncritical Potts model on \(\mathbb{Z}^{2}\). Probab. Theory Relat. Fields 158, 477–512 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Coquille, L., Velenik, Y.: A finite-volume version of Aizenman-Higuchi theorem for the 2d Ising model. Probab. Theory Relat. Fields 153, 25–44 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Dobrushin, R.L.: Description of a random field by means of conditional probabilities and the conditions governing its regularity. Theory Probab. Appl. 13, 197–224 (1968)CrossRefGoogle Scholar
  14. 14.
    Dobrushin, R.L.: The Gibbs state that describes the coexistence of phases for a three-dimensional Ising model. Teor. Verojatnost. i Primenen. 17, 619–639 (1972)MathSciNetGoogle Scholar
  15. 15.
    Edwards, R.G., Sokal, A.D.: Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D 38, 2009–2012 (1988)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Gallavotti, G.: The phase separation line in the two-dimensional Ising model. Commun. Math. Phys. 27, 103–136 (1972)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Georgii, H. -O.: Gibbs measures and phase transitions, vol. 9 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, (1988)Google Scholar
  18. 18.
    Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases, in Phase transitions and critical phenomena. Phase Transit. Crit. Phenom. 18, 1–142 (2001). (Academic Press, San Diego)CrossRefGoogle Scholar
  19. 19.
    Gielis, G., Grimmett, G.: Rigidity of the interface in percolation and random-cluster models. J. Stat. Phys. 109, 1–37 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Goldstein, S.: Remarks on the global Markov property. Commun. Math. Phys. 74, 223–234 (1980)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    Greenberg, L., Ioffe, D.: On an invariance principle for phase separation lines. Ann. Inst. H. Poincaré Probab. Stat. 41, 871–885 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. 22.
    G. Grimmett, The random-cluster model, vol. 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2006Google Scholar
  23. 23.
    Higuchi, Y.: On limiting Gibbs states of the two-dimensional Ising models. Publ Res. Inst. Math. Sci. 14, 53–69 (1978)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Higuchi, Y.: On some limit theorems related to the phase separation line in the two-dimensional Ising model. Z. Wahrsch. Verw. Gebiete 50, 287–315 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Higuchi, Y.: On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model, in Random fields, Vol. I, II (Esztergom : vol. 27 of Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam 1981, pp 517–534 (1979)Google Scholar
  26. 26.
    Israel, R.B.: Some examples concerning the global markov property. Commun. Math. Phys. 105, 669–673 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Kahn, J., Weininger, N.: Positive association in the fractional fuzzy Potts model. Ann. Probab. 35, 2038–2043 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Kenyon, R.: Local statistics of lattice dimers. Annales de l’institut Henri Poincaré (B) 33, 591–618 (1997)Google Scholar
  29. 29.
    Lanford III, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Martirosian, D.H.: Translation invariant Gibbs states in the \(q\)-state Potts model. Commun. Math. Phys. 105, 281–290 (1986)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Messager, A., Miracle-Sole, S.: Correlation functions and boundary conditions in the Ising ferromagnet. J. Stat. Phys. 17, 245–262 (1977)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Miracle-Sole, S.: Surface tension, step free energy, and facets in the equilibrium crystal. J. Stat. Phys. 79, 183–214 (1995)CrossRefADSzbMATHGoogle Scholar
  33. 33.
    Miyamoto, M.: Statistical mechanics – a mathematical approach (in Japanese). Nippon-Hyoron-Sha Co., Ltd (2004)Google Scholar
  34. 34.
    Schonmann, R.H.: On two correlation inequalities for Potts models. J. Stat. Phys. 52, 61–67 (1988)CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. 35.
    van Beijeren, H.: Interface sharpness in the ising system. Commun. Math. Phys. 40, 1–6 (1975)CrossRefADSGoogle Scholar
  36. 36.
    van den Berg, J., Häggström, O., Kahn, J.: Some conditional correlation inequalities for percolation and related processes. Random Struct. Algorithms 29, 417–435 (2006)CrossRefzbMATHGoogle Scholar
  37. 37.
    van Enter, A.C.D., Medved, I., Netočný, K.: Chaotic size dependence in the Ising model with random boundary conditions. Markov Process. Relat. Fields 8, 479–508 (2002)zbMATHGoogle Scholar
  38. 38.
    van Enter, A.C.D., Netočný, K., Schaap, H.G.: On the Ising model with random boundary condition. J. Stat. Phys. 118, 997–1056 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikRheinische Friedrich-Wilhelms-UniversitätBonnGermany

Personalised recommendations