Skip to main content
Log in

Half-Space Problems for a Linearized Discrete Quantum Kinetic Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer, for a general discrete model of a quantum kinetic equation for excitations in a Bose gas. In the discrete case the plane stationary quantum kinetic equation reduces to a system of ordinary differential equations. These systems are studied close to equilibrium and are proved to have the same structure as corresponding systems for the discrete Boltzmann equation. Then a classification of well-posed half-space problems for the homogeneous, as well as the inhomogeneous, linearized discrete kinetic equation can be made. The number of additional conditions that need to be imposed for well-posedness is given by some characteristic numbers. These characteristic numbers are calculated for discrete models axially symmetric with respect to the x-axis. When the characteristic numbers change is found in the discrete as well as the continuous case. As an illustration explicit solutions are found for a small-sized model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkeryd, L.: On low temperature kinetic theory; spin diffusion, Bose–Einstein condensates, anyons. J. Stat. Phys. 150, 1063–1079 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Arkeryd, L., Nouri, A.: A Milne problem from a Bose condensate with excitations. Kinet. Relat. Models 6, 671–686 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Comm. Pure Appl. Math. 39, 323–352 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bardos, C., Golse, F., Sone, Y.: Half-space problems for the Boltzmann equation: a survey. J. Stat. Phys. 124, 275–300 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bernhoff, N.: On half-space problems for the linearized discrete Boltzmann equation. Riv. Mat. Univ. Parma 9, 73–124 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Bernhoff, N.: On half-space problems for the weakly non-linear discrete Boltzmann equation. Kinet. Relat. Models 3, 195–222 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernhoff, N., Bobylev, A.: Weak shock waves for the general discrete velocity model of the Boltzmann equation. Commun. Math. Sci. 5, 815–832 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhaduri, R.K., Bhalerao, R.S., Murthy, M.V.N.: Haldane exclusion statistics and the Boltzmann equation. J. Stat. Phys. 82, 1659–1668 (1996)

    Article  ADS  MATH  Google Scholar 

  9. Bobylev, A.V., Bernhoff, N.: Discrete velocity models and dynamical systems. In: N. Bellomo, R. Gatignol (eds.) Lecture Notes on the Discretization of the Boltzmann Equation, pp. 203–222. World Scientific, Singapore (2003)

  10. Bobylev, A.V., Cercignani, C.: Discrete velocity models without non-physical invariants. J. Stat. Phys. 97, 677–686 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math. 320, 639–644 (1995)

  12. Bobylev, A.V., Vinerean, M.C.: Construction of discrete kinetic models with given invariants. J. Stat. Phys. 132, 153–170 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Bobylev, A.V., Vinerean, M.C., Windfäll, Å.: Discrete velocity models of the Boltzmann equation and conservation laws. Kinet. Relat. Models 3, 35–58 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cabannes, H.: The discrete Boltzmann equation (1980, 2003). Lecture notes given at the University of California at Berkeley, : revised with R. Gatignol and L-S, Luo (1980). 2003

  15. Cercignani, C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988).

  16. Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000)

  17. Coron, F., Golse, F., Sulem, C.: A classification of well-posed kinetic layer problems. Comm. Pure Appl. Math. 41, 409–435 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fainsilber, L., Kurlberg, P., Wennberg, B.: Lattice points on circles and discrete velocity models for the Boltzmann equation. Siam J. Math. Anal. 37, 1903–1922 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Golse, F.: Analysis of the boundary layer equation in the kinetic theory of gases. Bull. Inst. Math. Acad. Sin. 3, 211–242 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Golse, F., Poupaud, F.: Stationary solutions of the linearized Boltzmann equation in a halfspace. Math. Methods Appl. Sci. 11, 483–502 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Kawashima, S., Nishibata, S.: Existence of a stationary wave for the discrete Boltzmann equation in the half space. Comm. Math. Phys. 207, 385–409 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Kawashima, S., Nishibata, S.: Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries. Comm. Math. Phys. 211, 183–206 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kirkpatrick, T.R., Dorfman, J.R.: Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58, 301–331 (1985)

    Article  ADS  Google Scholar 

  24. Nordheim, L.W.: On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. Roy. Soc. London Ser. A 119, 689–698 (1928)

    Article  ADS  MATH  Google Scholar 

  25. Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865–1883 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Basel (2002)

  27. Sone, Y.: Molecular Gas Dynamics. Birkhäuser, Basel (2007)

  28. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. Phys. Rev. 43, 552–561 (1933)

    Article  ADS  Google Scholar 

  29. Ukai, S.: On the half-space problem for the discrete velocity model of the Boltzmann equation. In: S. Kawashima, T. Yanagisawa (eds.) Advances in Nonlinear Partial Differential Equations and Stochastics, pp. 160–174. World Scientific, Singapore (1998)

  30. Ukai, S., Yang, T., Yu, S.H.: Nonlinear boundary layers of the Boltzmann equation: I. Existence. Comm. Math. Phys. 236, 373–393 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Wu, Y.-S.: Statistical distribution for generalized ideal gas of fractional-statistics particles. Phys. Rev. Lett. 73, 922–925 (1994)

    Article  ADS  Google Scholar 

  32. Yang, X.: The solutions for the boundary layer problem of Boltzmann equation in a halfspace. J. Stat. Phys. 143, 168–196 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Zaremba, E., Nikuni, T., Griffin, A.: Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116, 277–345 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Leif Arkeryd for proposing this study and Alexander Bobylev for encouraging it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niclas Bernhoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernhoff, N. Half-Space Problems for a Linearized Discrete Quantum Kinetic Equation. J Stat Phys 159, 358–379 (2015). https://doi.org/10.1007/s10955-015-1190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1190-4

Keywords

Navigation