Abstract
We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez in (J Math Biol, 56(6):765–792 2008). In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level—a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system.
This is a preview of subscription content, access via your institution.







References
Collet, P., Martínez, S.: Asymptotic velocity of one dimensional diffusions with periodic drift. J. Math. Biol. 56(6), 765–792 (2008)
Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998)
Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002)
Machura, L., Kostur, M., Talkner, P., Łuczka, J., Hänggi, P.: Absolute negative mobility induced by thermal equilibrium fluctuations. Phys. Rev. Lett. 98, 040601 (2007)
Reimann, P., Van den Broeck, C., Linke, H., Rubi, J.M., Perez-Madrid, A.: Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 87(1), 010602 (2001)
Pavliotis, G.A.: A multiscale approach to Brownian motors. Phys. Lett. A 344, 331–345 (2005)
Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, New York (2011)
Garnier, J.: Homogenization in a periodic and time-dependent potential. SIAM J. Appl. Math. 57(1), 95–111 (1997)
Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Nonequilibrium statistical mechanics 2nd (ed), Springer Series in Solid-State Sciences, vol. 31. Springer, Berlin (1991).
Resibois, P., De Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)
Joubaud, R., Stoltz, G.: Nonequilibrium shear viscosity computations with Langevin dynamics. Multiscale Model. Sim. 10, 191–216 (2012)
Komorowski, T., Olla, S.: On the superdiffusive behavior of passive tracer with a Gaussian drift. J. Stat. Phys. 108(3–4), 647–668 (2002)
Lebowitz, J.L., Rost, H.: The Einstein relation for the displacement of a test particle in a random environment. Stoch. Proc. Appl. 54(2), 183–196 (1994)
Rodenhausen, H.: Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Stat. Phys. 55(5–6), 1065–1088 (1989)
Latorre, J.C., Pavliotis, G.A., Kramer, P.R.: Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. J. Stat. Phys. 150(4), 776–803 (2013)
Herrmann, S., Imkeller, P.: The exit problem for diffusions with time-periodic drift and stochastic resonance. Ann. Appl. Probab. 15(1), 39–68 (2005)
Komorowski, T., Olla, S.: On mobility and Einstein relation for tracers in time-mixing random environments. J. Stat. Phys. 118(3–4), 407–435 (2005)
Leimkuhler, B., Matthews, Ch., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. arXiv:1308.5814 (2013)
Cattiaux, P., Chafaï, D., Guillin, A.: Central limit theorems for additive functionals of ergodic Markov diffusions processes. ALEA Lat Am. J Probab. Math. Stat. 9(2), 337–382 (2012)
De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3–4), 787–855 (1989)
Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)
Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes: Time symmetry and martingale approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 345. Springer, Heidelberg (2012).
Talay, D.: Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8, 163–198 (2002)
Kopec, M.: Weak Backward Error Analysis for Langevin Process. arXiv:1310.2599 (2013)
Hairer, M., Pavliotis, G.A.: Periodic homogenization for hypoelliptic diffusions. J. Stat. Phys. 117(1/2), 261–279 (2004)
Pavliotis, G.A.: Asymptotic analysis of the Green-Kubo formula. IMA J. Appl. Math. 75(6), 951–967 (2010)
Pavliotis, G.A.: Homogenization Theory for Advection-Diffusion Equations with Mean Flow, Ph.D Thesis. Rensselaer Polytechnic Institute, Troy, NY (2002).
Hairer, M., Pavliotis, G.A.: From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys. 131(1), 175–202 (2008)
Papanicolaou, G.C., Varadhan, S.R.S.: Ornstein-Uhlenbeck process in a random potential. Commun. Pure Appl. Math. 38(6), 819–834 (1985)
Pavliotis, G.A., Vogiannou, A.: Diffusive transport in periodic potentials: underdamped dynamics. Fluct. Noise Lett. 8(2), L155–173 (2008)
Höpfner, R., Kutoyants, Y.: Estimating discontinuous periodic signals in a time inhomogeneous diffusion. Stat. Inference Stoch. Process. 13(3), 193–230 (2010)
Hairer, M., Mattingly, J.C.: Yet another look at Harris’ ergodic theorem for Markov chains. Seminar on Stochastic Analysis, Random Fields and Applications VI. Progress in Probability, vol. 63, pp. 109–117. Birkhäuser/Springer, Basel (2011).
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability 2nd (ed.). Cambridge University Press, Cambridge (2009).
Tierney, L.: Markov chains for exploring posterior distributions. Ann. Statist. 22(4), 1701–1762 (1994)
Nummelin, E.: General Irreducible Markov Chains and Nonnegative Operators. Cambridge University Press, Cambridge (1984)
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 2nd (ed), vol. 113. Springer, Berlin (1991).
Rey-Bellet, L.: Ergodic properties of markov processes. In: Attal, S., Joye, A., Pillet, C.A. (eds.) Open Quantum Systems II. Lecture Notes in Mathematics, vol. 1881, pp. 1–39. Springer, Berlin (2006)
Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Proc. Appl. 101(2), 185–232 (2002)
Stoltz, G.: Molecular Simulation: Nonequilibrium and Dynamical Problems. Habilitation thesis. Université Paris Est. http://tel.archives-ouvertes.fr/tel-00709965 (2012)
Eckmann, J.-P., Hairer, M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235(2), 233–253 (2003)
Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171, 151–218 (2004)
Villani, C.: Hypocoercivity, vol. 202, no. 950. Memoirs of the American Mathematical Society (2009)
Ethier, S.N., Kurtz, T.G.: Markov Pocesses. Probability and mathematical statistics. Wiley series in probability and mathematical statistics. Wiley, New York (1986).
Billingsley, P.: Convergence of Probability Measures. Wiley series in probability and statistics. Wiley, Hoboken, NJ (1999)
Billingsley, P.: Probability and Measure. Wiley series in probability and statistics. Wiley, Hoboken, NJ (1995)
Helland, I.S.: Central limit theorems for martingales with discrete or continuous time. Scand. J. Stat. 9, 79–94 (1982)
Acknowledgments
This work was initiated while GP was visiting the INRIA team MICMAC (now MATHERIALS) at CERMICS. The hospitality and financial support from INRIA are greatly acknowledged. RJ’s research is supported by the EPSRC through grant EP/J009636/1. GP’s research is partially supported by the EPSRC through grants EP/J009636/1 and EP/H034587/1. GS’s research is partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement number 614492. The authors benefited from discussions with Stefano Olla and Stephan De Bièvre.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Joubaud, R., Pavliotis, G.A. & Stoltz, G. Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing. J Stat Phys 158, 1–36 (2015). https://doi.org/10.1007/s10955-014-1118-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-014-1118-4
Keywords
- Linear response of nonequilibrium systems
- Mobility
- Langevin dynamics
- Effective diffusion coefficient
- Hypoelliptic diffusions
- Langevin dynamics
- Linear response