Skip to main content
Log in

A Sharp Threshold for a Modified Bootstrap Percolation with Recovery

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: ‘healthy’ or ‘infected’ and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. Vertices are initially infected independently at random and the central question is whether all vertices eventually become infected. The model examined here is such a process on a square grid for which healthy vertices with at least two infected neighbours become infected and infected vertices with no infected neighbours become healthy. Sharp thresholds are given for the critical probability of initial infections for all vertices eventually to become infected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A 21, 3801–3813 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Balister, P., Bollobás, B., Johnson, R.J., Walters, M.: Random majority percolation. Random Struct. Algorithms 36, 315–340 (2010)

    Article  MATH  Google Scholar 

  3. Bollobás, B.: Random Graphs, 2nd edn, vol. 73, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2001)

  4. Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Probab. Theory Relat. Fields 134, 624–648 (2006)

    Article  MATH  Google Scholar 

  5. Balogh, J., Pete, G.: Random disease on the square grid. Random Struct. Algorithms 13, 409–422 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  7. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions. Ann. Probab. 37, 1329–1380 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364, 2667–2701 (2012)

    Article  MATH  Google Scholar 

  9. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C Solid State Phys. 12, L31 (1979)

    Article  ADS  Google Scholar 

  10. Fontes, L.R., Schonmann, R.H., Sidoravicius, V.: Stretched exponential fixation in stochastic Ising models at zero temperature. Commun. Math. Phys. 228, 495–518 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Gravner, J., Holroyd, A.E., Morris, R.: A sharper threshold for bootstrap percolation in two dimensions. Probab. Theory Relat. Fields 153, 1–23 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harris, T.E.: A lower bound of the critical probability in a certain percolations process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  MATH  ADS  Google Scholar 

  13. Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125, 195–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Janson, S.: Poisson approximations for large deviations. Random Struct. Algorithms 1, 221–229 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Janson, S., Łuczak, T., Rucinski, A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  16. McDiarmid, C., Reed, B.: Concentration for self-bounding functions and an inequality of Talagrand. Random Struct. Algorithms 29, 549–557 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Morris, R.: Zero-temperature Glauber dynamics on \(\mathbb{Z}^d\). Probab. Theory Relat. Fields 149, 417–434 (2011)

    Article  MATH  Google Scholar 

  18. Reimer, D.: Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput. 9, 27–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schonmann, R.H.: Finite size scaling behavior of a biased majority rule cellular automaton. Phys. A 167, 619–627 (1990)

    Article  MathSciNet  Google Scholar 

  20. Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20, 174–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81, 73–205 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Talagrand, M.: New concentration inequalities in product spaces. Invent. Math. 126, 505–563 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22, 556–569 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. van Enter, A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Gunderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coker, T., Gunderson, K. A Sharp Threshold for a Modified Bootstrap Percolation with Recovery. J Stat Phys 157, 531–570 (2014). https://doi.org/10.1007/s10955-014-1099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1099-3

Keywords

Mathematics Subject Classification

Navigation