Skip to main content
Log in

Comparison Theorems for Gibbs Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Dobrushin comparison theorem is a powerful tool to bound the difference between the marginals of high-dimensional probability distributions in terms of their local specifications. Originally introduced to prove uniqueness and decay of correlations of Gibbs measures, it has been widely used in statistical mechanics as well as in the analysis of algorithms on random fields and interacting Markov chains. However, the classical comparison theorem requires validity of the Dobrushin uniqueness criterion, essentially restricting its applicability in most models to a small subset of the natural parameter space. In this paper we develop generalized Dobrushin comparison theorems in terms of influences between blocks of sites, in the spirit of Dobrushin–Shlosman and Weitz, that substantially extend the range of applicability of the classical comparison theorem. Our proofs are based on the analysis of an associated family of Markov chains. We develop in detail an application of our main results to the analysis of sequential Monte Carlo algorithms for filtering in high dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer Series in Statistics. Springer, New York (2005)

    Google Scholar 

  2. Dai Pra, P., Scoppola, B., Scoppola, E.: Sampling from a Gibbs measure with pair interaction by means of PCA. J. Stat. Phys. 149(4), 722–737 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Del Moral, P., Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Probab. Stat. 37(2), 155–194 (2001)

    Article  MATH  Google Scholar 

  4. Dobrushin, R.L., Shlosman, S.B.: Constructive criterion for the uniqueness of Gibbs field. In: Statistical physics and dynamical systems (Köszeg, 1984), Program Physics, vol. 10, pp. 347–370. Birkhäuser Boston, Boston (1985)

  5. Dobrušin, R.L.: Definition of a system of random variables by means of conditional distributions. Teor. Verojatnost. i Primenen. 15, 469–497 (1970)

    MathSciNet  Google Scholar 

  6. Dudley, R.M.: Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002) (Revised reprint of the 1989 original)

  7. Dyer, M., Goldberg, L.A., Jerrum, M.: Dobrushin conditions and systematic scan. Comb. Probab. Comput. 17(6), 761–779 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dyer, M., Goldberg, L.A., Jerrum, M.: Matrix norms and rapid mixing for spin systems. Ann. Appl. Probab. 19(1), 71–107 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Föllmer, H.: Tail structure of Markov chains on infinite product spaces. Z. Wahrsch. Verw. Gebiete 50(3), 273–285 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Föllmer, H.: A covariance estimate for Gibbs measures. J. Funct. Anal. 46(3), 387–395 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Föllmer, H.: Random fields and diffusion processes. In: École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–1987, Lecture Notes in Mathematics, vol. 1362, pp. 101–203. Springer, Berlin (1988)

  12. Georgii, H.O.: Measures and Phase Transitions, de Gruyter Studies in Mathematics, vol. 9, 2nd edn. Walter de Gruyter & Co., Berlin (2011)

    Book  Google Scholar 

  13. Guionnet, A., Zegarlinski, B.: Lectures on Logarithmic Sobolev Inequalities. In: Séminaire de Probabilités, XXXVI, Lecture Notes in Mathematics, vol. 1801, pp. 1–134. Springer, Berlin (2003)

  14. Kallenberg, O.: Foundations of Modern Probability. Probability and its Applications (New York), 2nd edn. Springer-Verlag, New York (2002)

    Google Scholar 

  15. Külske, C.: Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures. Commun. Math. Phys. 239(1–2), 29–51 (2003)

    Article  ADS  MATH  Google Scholar 

  16. Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Liggett, T.M.: Interacting Particle Systems. Classics in Mathematics. Springer-Verlag, Berlin (2005) (Reprint of the 1985 original)

  18. Rebeschini, P., van Handel, R.: Can Local Particle Filters Beat the Curse of Dimensionality? Preprint arxiv:1301.6585 (2013)

  19. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1988)

    MATH  Google Scholar 

  20. Rue, T.D.L., Fernández, R., Sokal, A.D.: How to clean a dirty floor: probabilistic potential theory and the Dobrushin uniqueness theorem. Markov Process Relat. Fields 14(1), 1–78 (2008)

    MATH  Google Scholar 

  21. Simon, B.: The Statistical Mechanics of Lattice Gases. Princeton Series in Physics, vol. I. Princeton University Press, Princeton (1993)

    Google Scholar 

  22. Tatikonda, S.C.: Convergence of the sum-product algorithm. In: Information Theory Workshop, 2003. Proceedings. 2003 IEEE, pp. 222–225 (2003)

  23. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer Series in Statistics. With Applications to Statistics. Springer-Verlag, New York (1996)

  24. Villani, C.: Optimal Transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009). Old and new

  25. Weitz, D.: Combinatorial criteria for uniqueness of Gibbs measures. Random Struct. Algorithms 27(4), 445–475 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wu, L.: Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition. Ann. Probab. 34(5), 1960–1989 (2006)

    Article  MathSciNet  Google Scholar 

  27. Younes, L.: Parametric inference for imperfectly observed Gibbsian fields. Probab. Theory Relat. Fields 82(4), 625–645 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF Grants DMS-1005575 and CAREER-DMS-1148711, and by the ARO through PECASE award W911NF-14-1-0094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon van Handel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebeschini, P., van Handel, R. Comparison Theorems for Gibbs Measures. J Stat Phys 157, 234–281 (2014). https://doi.org/10.1007/s10955-014-1087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1087-7

Keywords

Navigation