Abstract
We consider the classical limit of the Nelson model, a system of stable nucleons interacting with a meson field. We prove convergence of the quantum dynamics towards the evolution of the coupled Klein–Gordon–Schrödinger equation. Also, we show that the ground state energy level of \(N\) nucleons, when \(N\) is large and the meson field approaches its classical value, is given by the infimum of the classical energy functional at a fixed density of particles. Our study relies on a recently elaborated approach for mean field theory and uses Wigner measures.
This is a preview of subscription content, access via your institution.
References
Abdesselam, A., Hasler, D.: Analyticity of the ground state energy for massless Nelson models. Commun. Math. Phys. 310(2), 511–536 (2012). doi:10.1007/s00220-011-1407-6
Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2005)
Ammari, Z., Nier, F.: Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential. Ann. Sc. Norm. Sup. (to appear)
Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9(8), 1503–1574 (2008). doi:10.1007/s00023-008-0393-5
Ammari, Z., Nier, F.: Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50(4), 042107 (2009). doi:10.1063/1.3115046
Ammari, Z., Nier, F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. (9) 95(6), 585–626 (2011). doi:10.1016/j.matpur.2010.12.004
Arai, a: Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation. Rev. Math. Phys. 13(9), 1075–1094 (2001). doi:10.1142/S0129055X01000934
Bach, v, Fröhlich, J., Sigal, I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249–290 (1999). doi:10.1007/s002200050726
Bachelot, A.: Problème de Cauchy pour des systèmes hyperboliques semi-linéaires. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(6), 453–478 (1984). http://www.numdam.org/item?id=AIHPC_1984__1_6_453_0
Betz, V., Hiroshima, F., Lőrinczi, J., Minlos, R.A., Spohn, H.: Ground state properties of the Nelson Hamiltonian: a Gibbs measure-based approach. Rev. Math. Phys. 14(2), 173–198 (2002). doi:10.1142/S0129055X02001119
Dereziński, J., Gérard, C.: Scattering Theory of Classical and Quantum N-Particle Systems. Texts and Monographs in Physics. Springer, Berlin (1997)
Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11(4), 383–450 (1999)
Falconi, M.: Classical limit of the Nelson model with cutoff. J. Math. Phys. 54(1), 012303, 30 (2013). doi:10.1063/1.4775716
Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Compton scattering. Commun. Math. Phys. 252(1–3), 415–476 (2004). doi:10.1007/s00220-004-1180-x
Georgescu, V., Gérard, C., Møller, J.S.: Spectral theory of massless Pauli–Fierz models. Commun. Math. Phys. 249(1), 29–78 (2004). doi:10.1007/s00220-004-1111-x
Gérard, C., Hiroshima, F., Panati, A., Suzuki, A.: Infrared problem for the Nelson model on static space–times. Commun. Math. Phys. 308(2), 543–566 (2011)
Ginibre, J., Velo, G.: Long range scattering and modified wave operators for the wave–Schrödinger system. Ann. Henri Poincaré 3(3), 537–612 (2002). doi:10.1007/s00023-002-8627-4
Ginibre, J., Nironi, F., Velo, G.: Partially classical limit of the Nelson model. Ann. Henri Poincaré 7(1), 21–43 (2006). doi:10.1007/s00023-005-0240-x
Hayashi, N., von Wahl, W.: On the global strong solutions of coupled Klein–Gordon–Schrödinger equations. J. Math. Soc. Jpn. 39(3), 489–497 (1987). doi:10.2969/jmsj/03930489
Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)
Møller, J.S.: The translation invariant massive Nelson model. I. The bottom of the spectrum. Ann. Henri Poincaré 6(6), 1091–1135 (2005). doi:10.1007/s00023-005-0234-8
Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964)
Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4(3), 439–486 (2003). doi:10.1007/s00023-003-0136-6
Shimomura, A.: Scattering theory for the coupled Klein–Gordon–Schrödinger equations in two space dimensions. II. Hokkaido Math. J. 34(2), 405–433 (2005)
Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005)
Spohn, H.: Ground state of a quantum particle coupled to a scalar Bose field. Lett. Math. Phys. 44(1), 9–16 (1998). doi:10.1023/A:1007473300274
Acknowledgments
Marco Falconi has been supported by the Centre Henri Lebesgue (programme ANR-11-LABX-0020-01).
Author information
Authors and Affiliations
Corresponding author
Appendix: Estimates on Fock Space
Appendix: Estimates on Fock Space
We provide some technical results used throughout the paper and proved here for general Hilbert spaces.
Lemma 6.1
Let \(\fancyscript{Y}\) be an Hilbert space, \(\Gamma _s(\fancyscript{Y})\) the corresponding symmetric Fock space (with \(a^{\#}\), \(N\), \(W(\xi )\) the annihilation/creation, number and Weyl operators respectively).
Let \(y\) be a positive self-adjoint operator on \(\fancyscript{Y}\) with domain \(D(y)\); and let \(d\Gamma (y)\) be the second quantization of \(y\), with form domain \(D(Y^{1/2})\). Then for all \(\xi \in D(y^{1/2})\), and \(\phi _1,\phi _2\in D(Y^{1/2})\):
Proof
Let \(\xi \in D(y^{1/2})\) be fixed, let \(\phi _1,\phi _2\in D(N)\). Furthermore, let \((y_m)_{m\in \mathbb {N}}\in \mathcal {L}(\fancyscript{Y})\) be a sequence of bounded operators that converges strongly to \(y\) on \(D(y)\), with \(y_m\le y\) for all \(m\). Then we define, for all \(\lambda \in \mathbb {R}\),
We remark that for every \(\delta \ge 0\) the Weyl operator maps \(D(N^{\delta })\) into itself. Taking the derivative in \(\lambda \), we obtain
Hence for all \(\phi _1,\phi _2\in D(N)\) we obtain, by \(M(0)=M(1)\), for all \(m\in \mathbb {N}\):
Choose now \(\phi _1=\phi _2=\phi \in D(Y^{1/2})\cap D(N)\). Then
By monotone convergence theorem, the left hand side converges to \(\langle \phi , W^{*}(\xi ) d\Gamma (y) W(\xi ) \phi \rangle \) when \(m\rightarrow \infty \), since \(d\Gamma (y)\) is a closed operator. The result extends by density to all \(\phi \in D(Y^{1/2})\); so the Weyl operator \(W\) maps the form domain of \(d\Gamma (y)\) into itself. Then for all \(\phi _1,\phi _2\in D(Y^{1/2})\cap D(N)\), we can take the limit \(m\rightarrow \infty \) in (6.1). The result is then extended by density to all \(\phi _1,\phi _2\in D(Y^{1/2})\). \(\square \)
Corollary 6.2
-
(i)
Let \(\xi \in D(y)\). Then \((d\Gamma (y)+1)^{-1}W(\xi )(d\Gamma (y)+1)\in \mathcal {L}(\Gamma _s(\fancyscript{Y}))\). Furthermore, there exists \(C(||y \xi ||_{\fancyscript{Y}}^{},||\xi ||_{\fancyscript{Y}}^{})>0\) independent of \(\varepsilon \) such that:
$$\begin{aligned} |(d\Gamma (y)+1)^{-1}W(\xi )(d\Gamma (y)+1)|_{\mathcal {L}(\Gamma _s(\fancyscript{Y}))}^{}\le C(||y \xi ||_{\fancyscript{Y}}^{},||\xi ||_{\fancyscript{Y}}^{})(1+O(\varepsilon )). \end{aligned}$$ -
(ii)
Let \(y\) be a positive bounded operator and let \(\xi \in \fancyscript{Y}\). Then for any \(\delta _1>0\) and \(\delta _2\in \mathbb {R}\), \((d\Gamma (y)^{\delta _1}+1)^{-\delta _2}W(\xi )(d\Gamma (y)^{\delta _1}+1)^{\delta _2}\in \mathcal {L}(\Gamma _s(\fancyscript{Y}))\). Furthermore, there exists a constant \(C(\delta _1,\delta _2,||\xi ||_{\fancyscript{Y}}^{},|y|_{\mathcal {L}(\fancyscript{Y})}^{})>0\) independent of \(\varepsilon \) such that:
$$\begin{aligned} |(d\Gamma (y)^{\delta _1}+1)^{-\delta _2}W(\xi )(d\Gamma (y)^{\delta _1}+1)^{\delta _2}|_{\mathcal {L}(\Gamma _s(\fancyscript{Y}))}^{}\!\le \! C(\delta _1,\delta _2,||\xi ||_{\fancyscript{Y}}^{},|y|_{\mathcal {L}(\fancyscript{Y})})(1\!+\!O(\varepsilon )). \end{aligned}$$
The following proposition is a useful adaptation of [3, LemmasB.4 and B.6]:
Proposition 6.3
Let \(\fancyscript{Y}\) be an Hilbert space, \(\Gamma _s(\fancyscript{Y})\) the corresponding symmetric Fock space.
Let \(y_1,y_2\) be two operators on \(\fancyscript{Y}\) such that \((y_2+1)^{-1}y_1\in \mathcal {L}(\fancyscript{Y})\). Then \((d\Gamma (y_2^{*}y_2+1)+1)^{-1}d\Gamma (y_1) \in \mathcal {L}(\Gamma _s(\fancyscript{Y}))\), with:
Proof
Let \(\phi _1,\phi _2\in D(d\Gamma (y_1))\). Then (\(y(j)\) is the operator acting on the \(j\)-th variable):
However, we have that:
Hence, we obtain for any \(\phi _1,\phi _2\in \Gamma _s(\fancyscript{Y})\):
\(\square \)
Rights and permissions
About this article
Cite this article
Ammari, Z., Falconi, M. Wigner Measures Approach to the Classical Limit of the Nelson Model: Convergence of Dynamics and Ground State Energy. J Stat Phys 157, 330–362 (2014). https://doi.org/10.1007/s10955-014-1079-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-014-1079-7