Skip to main content
Log in

Menzerath–Altmann Law: Statistical Mechanical Interpretation as Applied to a Linguistic Organization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The distribution behavior described by the empirical Menzerath–Altmann law is frequently encountered during the self-organization of linguistic and non-linguistic natural organizations at various structural levels. This study presents a statistical mechanical derivation of the law based on the analogy between the classical particles of a statistical mechanical organization and the distinct words of a textual organization. The derived model, a transformed (generalized) form of the Menzerath–Altmann model, was termed as the statistical mechanical Menzerath–Altmann model. The derived model allows interpreting the model parameters in terms of physical concepts. We also propose that many organizations presenting the Menzerath–Altmann law behavior, whether linguistic or not, can be methodically examined by the transformed distribution model through the properly defined structure-dependent parameter and the energy associated states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Henceforth, we will refer to vocabulary of a text as distinct words (DWs) for convenience. In general, DWs of a text can be considered as the set of dissimilar constituents of a construct at the level of organization under investigation.

  2. Thus, we will use the terminologies word length and word energy interchangeably, for the rest of the paper.

  3. Note that we only consider the word length distribution of DWs in a text, so the frequency and the occurrence positions of the constituents (words) are insignificant.

References

  1. Menzerath, P.: Die Architektonik des deutschen Wortschatzes. Dümmler, Bonn (1954)

    Google Scholar 

  2. Hrebicek, L.: The Menzerath–Altmann law on the semantic level. Glottometrika 11, 47–56 (1989)

    Google Scholar 

  3. Teupenhayn, R., Altmann, G.: Clause length and Menzerath’s law. Glottometrika 6, 127–138 (1984)

    Google Scholar 

  4. Hrebicek, L.: Text Levels : Language Constructs. Constituents and the Menzerath–Altmann Law. Wissenschaftlicher Verlag, Trier (1995)

    Google Scholar 

  5. Wimmer, G., Köhler, R., Grotjahn, R., Altmann, G.: Towards a theory of word length distribution. J. Quant. Linguist. 1, 98–106 (1994)

    Article  Google Scholar 

  6. Eroglu, S.: Language-like behavior of protein length distribution in proteomes. Complexity. doi:10.1002/cplx.21498.

  7. Eroglu, S.: Self-organization of genic and intergenic sequence lengths in genomes: statistical properties and linguistic coherence. Complexity. doi:10.1002/cplx.21563

  8. Ferrer-i-Cancho, R., Forns, N., Hernández-Fernández, A., Bel-enguix, G., Baixeries, J.: The challenges of statistical patterns of language: the case of Menzerath’s law in genomes. Complexity 18, 11–17 (2013)

    Article  Google Scholar 

  9. Li, W.: Menzerath’s law at the gene-exon level in the human genome. Complexity 17, 49–53 (2012)

    Article  Google Scholar 

  10. Hernández-Fernández, A., Baixeries, J., Forns, N., Ferrer-i-Cancho, R.: Size of the whole versus number of parts in genomes. Entropy 13, 1465–1480 (2011)

    Article  ADS  MATH  Google Scholar 

  11. Solé, R.V.: Genome size, self-organization and DNA’s dark matter. Complexity 16, 20–23 (2010)

    Article  Google Scholar 

  12. Ferrer-i-Cancho, R., Forns, N.: The self-organization of genomes. Complexity 15, 34–36 (2009)

    Google Scholar 

  13. Boroda, M.G., Altmann, G.: Menzerath’s law in musical texts. Musikometrica 3, 1–13 (1991)

    Google Scholar 

  14. Altmann, G.: Prolegomena to Menzerath’s law. Glottometrika 2, 1–10 (1980)

    MathSciNet  Google Scholar 

  15. Krott, A.: Some remarks on the relation between word length and morpheme length. J. Quant. Linguist. 3, 29–37 (1996)

    Article  Google Scholar 

  16. Antic, G., Stadlober, E., Gryzbek, P., Kelih, E.: Word length and frequency distributions in different text genres. In: Spiliopoulou, M., Kruse, R., Borgelt, C., Niirnberger, A., Gaul, W. (eds.) From Data and Information Analysis to Knowledge Engineering, pp. 310–317. Springer, Berlin (2006)

    Chapter  Google Scholar 

  17. Popescu, I.-I., et al.: Word Frequency Studies. Mouton de Gruyter, Berlin-New York (2009)

    Google Scholar 

  18. Eroglu, S.: Menzerath–Altmann law for distinct word distribution analysis in a large text. Physica A 392, 2775–2780 (2013)

    Article  ADS  Google Scholar 

  19. Heaps, H.S.: Information Retrieval: Computational and Theoretical Aspects. Academic Press, Orlando (1978)

    MATH  Google Scholar 

  20. Kulacka, A., Macutek, J.: A discrete formula for the Menzerath–Altmann Law. J. Quant. Linguist. 14, 23–32 (2007)

    Article  Google Scholar 

  21. Cramer, I.M.: The parameters of the Menzerath–Altmann law. J. Quant. Linguist. 12, 41–52 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kosmidis, K., Kalampokis, A., Argyrakis, P.: Statistical mechanical approach of human language. Physica A 366, 495–502 (2006)

    Article  ADS  Google Scholar 

  23. Miyazima, S., Yamamoto, K.: Measuring the temperature of texts. Fractals 16, 25–32 (2008)

    Article  MathSciNet  Google Scholar 

  24. Rovenchak, A., Buk, S.: Application of a quantum ensemble model to linguistic analysis. Physica A 390, 1326–1331 (2011)

    Article  ADS  Google Scholar 

  25. Ferrer-i-Cancho, R.: Decoding least effort and scaling in signal frequency distributions. Physica A 345, 275–284 (2005)

    Article  ADS  Google Scholar 

  26. Balasubrahmanyan, V.K., Naranan, S.: Quantitative linguistics and complex system Studies. J. Quant. Linguist. 3, 177–228 (1996)

    Article  Google Scholar 

  27. Zipf, G.K.: Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley, Cambridge (1949)

    Google Scholar 

  28. Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M.J., Semple, S.: Compression as a universal principle of animal behavior. arXiv:1303.6174

  29. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  30. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Algin for helpful discussions and we appreciate the careful proofreading of the manuscript by H. Kreuzer. This work was partially supported by Eskisehir Osmangazi University’s Scientific Research Project Commission (Grant No. 2008-19019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sertac Eroglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroglu, S. Menzerath–Altmann Law: Statistical Mechanical Interpretation as Applied to a Linguistic Organization. J Stat Phys 157, 392–405 (2014). https://doi.org/10.1007/s10955-014-1078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1078-8

Keywords

Navigation