Skip to main content
Log in

Counter-Ions Between or at Asymmetrically Charged Walls: 2D Free-Fermion Point

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This work contributes to the problem of determining effective interaction between asymmetrically (likely or oppositely) charged objects whose total charge is neutralized by mobile pointlike counter-ions of the same charge, the whole system being in thermal equilibrium. The problem is formulated in two spatial dimensions with logarithmic Coulomb interactions. The charged objects correspond to two parallel lines at distance \(d\), with fixed line charge densities. Two versions of the model are considered: the standard “unconstrained” one with particles moving freely between the lines and the “constrained” one with particles confined to the lines. We solve exactly both systems at the free-fermion coupling and compare the results for the pressure (i.e. the force between the lines per unit length of one of the lines) with the mean-field Poisson-Boltzmann solution. For the unconstrained model, the large-\(d\) asymptotic behaviour of the free-fermion pressure differs from that predicted by the mean-field theory. For the constrained model, the asymptotic pressure coincides with the attractive van der Waals-Casimir fluctuational force. For both models, there are fundamental differences between the cases of likely-charged and oppositely-charged lines, the latter case corresponding at large distances \(d\) to a capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that whenever the pressure is of the form \(\beta P \propto 1/d^2\), it cannot depend on the absolute values of \(\sigma \) and \(\sigma '\), but only on the ratio \(\eta =\sigma /\sigma '\), for dimensional reasons. In the symmetric case, it is thus \(\sigma \) independent.

References

  1. Andelman, D.: Introduction to electrostatics in soft and biological matter. In: Poon, W.C.K., Andelman, D. (eds.) Soft Condensed Matter Physics in Molecular and Cell Biology, vol. 6. Taylor & Francis, New York (2006)

    Google Scholar 

  2. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Buenzli, P.R., Martin, PhA: Microscopic origin of universality in Casimir forces. J. Stat. Phys. 119, 273–307 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Burak, Y., Andelman, D.: Test-charge theory for the electric double layer. Phys. Rev. E 70, 016102 (2004)

    Article  ADS  Google Scholar 

  5. Carnie, S.L., Chan, D.Y.C.: The statistical mechanics of the electrical double layer: stress tensor and contact conditions. J. Chem. Phys. 74, 1293–1297 (1981)

    Article  ADS  Google Scholar 

  6. Choquard, Ph: The two-dimensional one component plasma on a periodic strip. Helv. Phys. Acta 54, 332–332 (1981)

    Google Scholar 

  7. Cornu, F., Jancovici, B.: On the two-dimensional Coulomb gas. J. Stat. Phys. 49, 33–56 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Cornu, F., Jancovici, B.: The electrical double layer: a solvable model. J. Chem. Phys. 90, 2444–2452 (1989)

    Article  ADS  Google Scholar 

  9. Forrester, P.J.: Exact results for two-dimensional Coulomb systems. Phys. Rep. 301, 235–270 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Henderson, D., Blum, L.: Some exact results and the application of the mean spherical approximation to charged hard spheres near a charged hard wall. J. Chem. Phys. 69, 5441–5449 (1978)

    Article  ADS  Google Scholar 

  11. Jancovici, B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386–388 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jancovici, B.: Inhomogeneous two-dimensional plasmas. In: Henderson, D. (ed.) Inhomogeneous Fluids, pp. 201–237. Dekker, New York (1992)

    Google Scholar 

  13. Jancovici, B., Šamaj, L.: Screening of classical Casimir forces by electrolytes in semi-infinite geometries. J. Stat. Mech., P08006 (2004)

  14. Kanduč, M., Trulsson, M., Naji, A., Burak, Y., Forsman, J., Podgornik, R.: Weak- and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Phys. Rev. E 78, 061105 (2008)

    Article  ADS  Google Scholar 

  15. Lau, A.W.C., Levine, D., Pincus, P.: Novel electrostatic attraction from plasmon fluctuations. Phys. Rev. Lett. 84, 4116–4119 (2000)

    Article  ADS  Google Scholar 

  16. Lau, A.W.C., Pincus, P., Levine, D., Fertig, H.A.: Electrostatic attraction of coupled Wigner crystals: finite temperature effects. Phys. Rev. E 63, 051604 (2001)

    Article  ADS  Google Scholar 

  17. Martin, PhA: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)

    Article  ADS  Google Scholar 

  18. Milton, K.A.: The Casimir Effect. World Scientific, London (2001)

    Book  MATH  Google Scholar 

  19. Netz, R.R., Orland, H.: Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)

    Article  Google Scholar 

  20. Netz, R.R.: Electrostatics of counter-ions at and between planar charged walls:from Poisson-Boltzmann to the strong-coupling theory. Eur. Phys. J. E 5, 557–574 (2001)

    Article  Google Scholar 

  21. Paillusson, F., Trizac, E.: Interaction regimes for oppositely charged plates with multivalent counterions. Phys. Rev. E 84, 011407 (2011)

    Article  ADS  Google Scholar 

  22. Šamaj, L., Percus, J.K.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)

    Article  ADS  MATH  Google Scholar 

  23. Šamaj, L., Wagner, J., Kalinay, P.: Translation symmetry breaking in the one-component plasma on the cylinder. J. Stat. Phys. 117, 159–178 (2004)

    Article  ADS  MATH  Google Scholar 

  24. Šamaj, L., Trizac, E.: Counterions at highly charged interfaces: from one plate to like-charge attraction. Phys. Rev. Lett. 106, 078301 (2011)

    Article  ADS  Google Scholar 

  25. Šamaj, L., Trizac, E.: Counter-ions at charged walls: two-dimensional systems. Eur. Phys. J. E 34, 20 (2011)

    Article  Google Scholar 

  26. Šamaj, L., Trizac, E.: Critical phenomena and phase sequence in a classical bilayer Wigner crystal at zero temperature. Phys. Rev. B 85, 205131 (2012)

    Article  ADS  Google Scholar 

  27. Shklovskii, B.I.: Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60, 5802–5811 (1999)

    Article  ADS  Google Scholar 

  28. dos Santos, A.P., Diehl, A., Levin, Y.: Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J. Chem. Phys. 130, 124110 (2009)

    Article  ADS  Google Scholar 

  29. Mallarino, J.P., Téllez, G., Trizac, E.: Counter-ion density profile around charged cylinders: the strong-coupling needle limit. J. Phys. Chem. B 117, 12702 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The support received from Grant VEGA No. 2/0049/12 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Trizac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šamaj, L., Trizac, E. Counter-Ions Between or at Asymmetrically Charged Walls: 2D Free-Fermion Point. J Stat Phys 156, 932–947 (2014). https://doi.org/10.1007/s10955-014-1053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1053-4

Keywords

Navigation