Skip to main content
Log in

Bootstrapping on Undirected Binary Networks Via Statistical Mechanics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  4. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325, 412–413 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Barvinok, A.: On the number of matrices and a random matrix with prescribed row and column sums and 0–1 entries. Adv. Math. 224, 316–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bascompte, J.: Disentangling the web of life. Science 325, 416–419 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bascompte, J.: Structure and dynamics of ecological networks (perspective). Science 329, 765–766 (2010)

    Article  ADS  Google Scholar 

  8. Bayati, M., Kim, J.H., Saberi, A.: A sequential algorithm for generating random graphs. Algorithmica 58, 860–910 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bianconi, G.: The entropy of randomized network ensembles. Europhys. Lett. 81, 28005 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bianconi, G.: Entropy of network ensembles. Phys. Rev. E. 79, 036114 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Boguñá, M., Krioukov, D.: Navigating ultrasmall worlds in ultrashort time. Phys. Rev. Lett. 102, 058701 (2009)

    Article  ADS  Google Scholar 

  13. Boguñá, M., Krioukov, D., Claffy, K.C.: Navigability of complex networks. Nat. Phys. 5, 74–80 (2009)

    Article  Google Scholar 

  14. Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010)

    Article  ADS  Google Scholar 

  15. Bollobás, B., Janson, S., Riordan, O.: Sparse random graphs with clustering. Random Struct. Algorithms 38, 269–323 (2011)

    Article  MATH  Google Scholar 

  16. Chen, C., Fushing, H.: Multi-scale community geometry in network and its application. Phys. Rev. E. 86, 041120 (2012)

    Article  ADS  Google Scholar 

  17. Chen, Y., Diaconis, P., Holmes, S.P., Liu, J.S.: Sequential monte carlo methods for statistical analysis of tables. J. Am. Stat. Assoc. 100, 109–120 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Croft, D., Madden, J., Franks, D.W., James, R.: Hypothesis testing in animal social networks. J. Trends Ecol. Evol. 26, 502–507 (2011)

    Article  Google Scholar 

  19. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fallani, F.D.V., Nicosia, V., Latora, V., Chavez, M.: Nonparametric resampling of random walks for spectral network clustering. Phys. Rev. E 89, 012802 (2014)

    Article  ADS  Google Scholar 

  21. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. Fushing, H., McAssey, M.: Time, temperature and data cloud geometry. Phys. Rev. E 82, 061110 (2010)

    Article  ADS  Google Scholar 

  23. Fushing, H., Wang, H., Van der Waal, K., McCowan, B., Koehl, P.: Multi-scale clustering by building a robust and self-correcting ultrametric topology on data points. PLoS ONE 8, e56259 (2013)

    Article  ADS  Google Scholar 

  24. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. (USA) 99, 7821–7826 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Goldenberg, A., Zheng, Z.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network model. Found. Trends Mach. Learn. 2, 1–117 (2009)

    Article  Google Scholar 

  26. Herbert, S.: The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962)

    Google Scholar 

  27. Havlin, S., Cohen, R.: Complex Networks: Structure, Robustness, and Function. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  28. Karrer, B., Newman, M.: Stochastic blockmodels and community structure in network. Phys. Rev. E 83, 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kim, J., Vu, V.: Generating random regular graphs. In: Proceedings of ACM Symposium on Theory of Computing (STOC), pp. 213–222 (2003)

  30. Kolacyzk, E.: Statistical Analysis of Network Models. Springer, New York (2009)

    Book  Google Scholar 

  31. Krakhardt, D.: Predicting with networks: non parametric multiple regression analysis of dyadic data. Soc. Netw. 10, 359–381 (1988)

    Article  Google Scholar 

  32. Krause, J., Croft, R., James, R.: Social network theory in the behavioural sciences: potential applications. Behav. Ecol. Sociobiol. 62, 15–27 (2007)

    Article  Google Scholar 

  33. Krioukov, D., Kitsak, M., Sinkovits, R., Rideout, D., Meyer, D., Boguñá, M.: Network cosmology. Sci. Rep. 2, 793 (2012)

    Article  ADS  Google Scholar 

  34. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. Krioukov, D., Papadopoulos, F., Vahdat, A., Boguñá, M.: Curvature and temperature of complex networks. Phys. Rev. E 80, 035101 (2009)

    Article  ADS  Google Scholar 

  36. Lancichinetti, A., Fortunato, S.: Community detection algorithm: a comparative analysis. Phys. Rev. E. 80, 056117 (2009)

    Article  ADS  Google Scholar 

  37. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E. 78, 046110 (2008)

    Article  ADS  Google Scholar 

  38. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PLoS One 6, e18961 (2011)

    Article  ADS  Google Scholar 

  39. Manly, B.: A note on the analysis of species co-occurrences. Ecology 76, 1109–1115 (1995)

    Article  Google Scholar 

  40. Manly, B.: Randomization, Bootstrap, and Monte Carlo methods in biology. CRC Press, Boca Raton (2006)

    Google Scholar 

  41. McKay, B.: Asymptotics for symmetric 0–1 matrices with prescribed row sums. Ars. Comb. A. 19, 15–25 (1985)

    MathSciNet  Google Scholar 

  42. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–179 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. Musmeci, N., Battiston, S., Caldarelli, G., Puliga, M., Gabrielli, A.: Bootstrapping topological properties and systemic risk of complex networks using the fitness model. J. Stat. Phys. 151, 720–734 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–246 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Newman, M.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  ADS  Google Scholar 

  46. Newman, M.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. (USA) 103, 8577–8582 (2006)

    Article  ADS  Google Scholar 

  47. Newman, M.: Random graphs with clustering. Phys. Rev. Lett. 103, 058701 (2009)

    Article  ADS  Google Scholar 

  48. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  49. Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton Univ. Press, New Jersey (2006)

    MATH  Google Scholar 

  50. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E. 69, 026113 (2004)

    Article  ADS  Google Scholar 

  51. Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96, 1077–1087 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  ADS  Google Scholar 

  53. Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A 13, L115–L121 (1980)

    Article  ADS  Google Scholar 

  54. Proulx, S., Promislow, D., Phillips, P.: Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353 (2005)

    Article  Google Scholar 

  55. Reichardt, J., Alamino, R., Saad, D.: The interplay between microscopic and mesoscopic structures in complex networks. PLoS One 6, e21282 (2011)

    Article  ADS  Google Scholar 

  56. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. (USA) 105, 1118–1123 (2007)

    Article  ADS  Google Scholar 

  57. Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PLoS One 5, e8694 (2010)

    Article  ADS  Google Scholar 

  58. Sih, A., Hauser, S., McHugh, K.: Social network theory: new insights and issues for behavorial ecologists. Behav. Ecol. Sociobiol. 63, 975–988 (2009)

    Article  Google Scholar 

  59. Snijders, T.A.B., Nowicki, K.: Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. Classif. 14, 75–100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  60. Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Comb. Prob. Comput. 8, 377–396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  61. Stephens, P., Buskirk, S., del Rio, C.: Inference in ecology and evolution. Trends Ecol. Evol. 22, 192–197 (2007)

    Article  Google Scholar 

  62. DiCiccio, T.J., Efron, B.: Bootstrap confidence intervals (with discussion). Stat. Sci. 11, 189–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  63. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families and variational inference. Mach. Learn. 1, 1–305 (2008)

    Article  MATH  Google Scholar 

  64. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Google Scholar 

  65. Zhao, Y., Levina, E., Zhu, J.: Community extraction for social networks. Proc. Natl. Acad. Sci. (USA) 108, 7321–7326 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Science Foundation Grant DMS-1007219 (co-funded by Cyber-enabled Discovery and Innovation (CDI) program). P. Koehl acknowledges support from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Koehl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fushing, H., Chen, C., Liu, SY. et al. Bootstrapping on Undirected Binary Networks Via Statistical Mechanics. J Stat Phys 156, 823–842 (2014). https://doi.org/10.1007/s10955-014-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1043-6

Keywords

Navigation