Skip to main content
Log in

Zero Density of Open Paths in the Lorentz Mirror Model for Arbitrary Mirror Probability

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show, incorporating results obtained from numerical simulations, that in the Lorentz mirror model, the density of open paths in any finite box tends to 0 as the box size tends to infinity, for any mirror probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acedo, L., Santos, A.: Diffusion in lattice Lorentz gases with mixtures of point scatterers. Phys. Rev. E 50, 4577 (1994)

    Article  ADS  Google Scholar 

  2. Bianca, C.: On the existence of periodic orbits in nonequilibrium Ehrenfest gas. Int. Math. Forum 7, 221–232 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Bruin, C.: A computer experiment on diffusion in the Lorentz gas. Physica 72(2), 261–286 (1974)

    Article  ADS  Google Scholar 

  4. Bunimovich, L.A., Troubetzkoy, S.E.: Recurrence properties of Lorentz lattice gas cellular automata. J. Stat. Phys. 67(1), 289–302 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bunimovich, L.A., Troubetzkoy, S.E.: Topological dynamics of flipping Lorentz lattice gas models. J. Stat. Phys. 72, 297 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Cohen, E.: New types of diffusion in lattice gas cellular automata. In: Mareschal, M., Holian, B. (eds.) Microscopic Simulations of Complex Hydrodynamic Phenomena, vol. 292. NATO ASI Series, pp. 137–152. Springer, US (1992)

  7. Cohen, E., Wang, F.: New results for diffusion in Lorentz lattice gas cellular automata. J. Stat. Phys. 81, 445 (1995)

    Article  ADS  MATH  Google Scholar 

  8. Cohen, E., Wang, F.: Diffusion and propagation in Lorentz lattice gases. Fields Inst. Commun. 6, 43 (1996)

    MathSciNet  Google Scholar 

  9. Ernst, M.H., van Velzen, G.A.: Lattice Lorentz gas. J. Phys. A: Math. Gen. 22, 4611 (1989)

    Article  ADS  Google Scholar 

  10. Ernst, M.H., van Velzen, G.A.: Long-time tails in lattice Lorentz gases. J. Stat. Phys. 57, 455 (1989)

    Article  ADS  Google Scholar 

  11. Grimmett, G.: Percolation and Disordered Systems. Lectures on Probability Theory and Statistics, pp. 153–300. Springer, Berlin (1997)

    Book  Google Scholar 

  12. Grimmett, G.: Percolation, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  13. Kong, X.P., Cohen, E.G.D.: Diffusion and propagation in triangular Lorentz lattice gas cellular automata. J. Stat. Phys. 62, 737 (1991)

    Article  ADS  Google Scholar 

  14. Kong, X.P., Cohen, E.G.D.: Lorentz lattice gases, abnormal diffusion, and polymer statistics. J. Stat. Phys. 62, 1153 (1991)

    Article  ADS  Google Scholar 

  15. Kong, X.P., Cohen, E.G.D.: A kinetic theorist’s look at lattice gas cellular automata. Physica D 47, 9–18 (1991)

    Article  ADS  Google Scholar 

  16. Kozma, G., Sidoravicius, V.: Lower bound for the escape probability in the Lorentz mirror model on the lattice. arXiv:1311.7437 [math.PR] pp. 1–2 (2013)

  17. Kraemer, A.S., Sanders, D.P.: Embedding quasicrystals in a periodic cell: dynamics in quasiperiodic structures. Phys. Rev. Lett. 111(12), 5501 (2013)

    Article  ADS  Google Scholar 

  18. Machta, J., Moore, S.M.: Diffusion and long-time tails in the overlapping Lorentz gas. Phys. Rev. A 32, 3164–3167 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Machta, J., Zwanzig, R.: Diffusion in a periodic Lorentz gas. Phys. Rev. Lett. 50, 1959–1962 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Moran, B., Hoover, W.G.: Diffusion in a periodic Lorentz gas. J. Stat. Phys. 48, 709–726 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Quas, A.N.: Infinite paths in a Lorentz lattice gas model. Probab. Theory Relat. Fields 114(2), 229–244 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ruijgrok, T.W., Cohen, E.: Deterministic lattice gas models. Phys. Lett. A 133(7), 415–418 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sahimi, M.: Applications of Percolation Theory. Taylor and Francis, London (2009)

    Google Scholar 

  24. van Beijeren, H., Ernst, M.H.: Diffusion in Lorentz lattice gas automata with backscattering. J. Stat. Phys. 70, 793 (1993)

    Article  ADS  MATH  Google Scholar 

  25. Wang, F., Cohen, E.: Diffusion in Lorentz lattice gas cellular automata: the honeycomb and quasi-lattices compared with the square and triangular lattices. J. Stat. Phys. 81, 467 (1995)

    Article  ADS  MATH  Google Scholar 

  26. Ziff, R.M.: Hull-generation walks. Physica D 38, 377–383 (1989)

    Article  ADS  Google Scholar 

  27. Ziff, R.M., Kong, X., Cohen, E.: Lorentz lattice-gas and kinetic-walk model. Phys. Rev. A 44(4), 2410 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank L. Bunimovich, E. Crane, T. LaGatta and R. Díaz for useful discussions and comments on earlier drafts, and an anonymous referee for useful suggestions which improved the manuscript. Financial support from CONACYT Grant CB-101246 and DGAPA-UNAM PAPIIT Grants IN116212 and IN117214 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atahualpa S. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraemer, A.S., Sanders, D.P. Zero Density of Open Paths in the Lorentz Mirror Model for Arbitrary Mirror Probability. J Stat Phys 156, 908–916 (2014). https://doi.org/10.1007/s10955-014-1038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1038-3

Keywords

Navigation