Skip to main content
Log in

Time to Absorption for a Heterogeneous Neutral Competition Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Neutral models aspire to explain biodiversity patterns in ecosystems where species difference can be neglected and perfect symmetry is assumed between species. Voter-like models capture the essential ingredients of the neutral hypothesis and represent a paradigm for other disciplines like social studies and chemical reactions. In a system where each individual can interact with all the other members of the community, the typical time to reach an absorbing state with a single species scales linearly with the community size. Here we show, by using a rigorous approach based on a large deviation principle and confirming previous approximate and numerical results, that in a mean-field heterogeneous voter model the typical time to reach an absorbing state scales exponentially with the system size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hubbell, S.P.: The Unified Neutral Theory of Biodiversity and Biogeography. Monographs in population biology. Princeton University Press, Princeton (2008)

    Google Scholar 

  2. Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A.: Neutral theory and relative species abundance in ecology. Nature 424(2), 1035–1037 (2003)

    Article  ADS  Google Scholar 

  3. Azaele, S., Pigolotti, S., Banavar, J.R., Maritan, A.: Dynamical evolution of ecosystems. Nature 444, 926–928 (2006)

    Article  ADS  Google Scholar 

  4. Vallade, M., Houchmandzadeh, B.: Analytical solution of a neutral model of biodiversity. Phys. Rev. E 68(6), 061902 (2003)

    Article  ADS  Google Scholar 

  5. Alonso, D., Etienne, R.S., McKane, A.J.: The merits of neutral theory. Trends Ecol. Evol. 21(8), 451–457 (2006)

    Article  Google Scholar 

  6. Chave, J.: Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004)

    Article  ADS  Google Scholar 

  7. Liggett, T.M.: Interacting Particle Systems. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  8. Al Hammal, O., Chaté, H., Dornic, I., Muñoz, M.A.: Langevin description of critical phenomena with two symmetric absorbing states. Phys. Rev. Lett. 94, 230601 (2005)

    Article  ADS  Google Scholar 

  9. Kimura, M., Takahata, N.: Population Genetics, Molecular Evolution, and the Neutral Theory: Selected Papers. Evolutionary biology. University of Chicago Press, Chicago (1995)

    Google Scholar 

  10. M. Henkel, H. Hinrichsen, and S. Lübeck. Non-equilibrium Phase Transitions. Volume I: Absorbing phase transitions. Theoretical and Mathematical Physics. Springer / Canopus, (2008)

  11. Dornic, I., Chaté, H., Chave, J., Hinrichsen, H.: Critical coarsening without surface tension: the universality class of the voter model. Phys. Rev. Lett. 87, 045701 (2001)

    Article  ADS  Google Scholar 

  12. Durrett, R., Levin, S.A.: Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans. R. Soc. Lond. Ser. B 343(1305), 329–350 (1994)

    Article  ADS  Google Scholar 

  13. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)

    Article  ADS  Google Scholar 

  14. Blythe, R.A., McKane, A.J.: Stochastic models of evolution in genetics, ecology and linguistics. J. Stat. Mech.: Theory Exp. 2007(07), P07018 (2007)

    Article  Google Scholar 

  15. Pigolotti, S., Cencini, M.: Coexistence and invasibility in a two-species competition model with habitat-preference. J. Theor. Biol. 265(4), 609–617 (2010)

    Article  MathSciNet  Google Scholar 

  16. Borile, C., Maritan, A., Muñoz, M.A.: The effect of quenched disorder in neutral theories. J. Stat. Mech.: Theory Exp. 2013(04), P04032 (2013)

    Article  Google Scholar 

  17. Tilman, D., May, R.M., Lehman, C.L., Nowak, M.A.: Habitat destruction and the extinction debt. Nature 371, 65–66 (1994)

    Article  ADS  Google Scholar 

  18. Masuda, N., Gibert, N., Redner, S.: Heterogeneous voter models. Phys. Rev. E 82, 010103 (2010)

    Article  ADS  Google Scholar 

  19. Masuda, N., Redner, S.: Can partisan voting lead to truth? J. Stat. Mech.: Theory Exp. 2011(02), L02002 (2011)

    Article  Google Scholar 

  20. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  21. Ódor, G.: Universality In Nonequilibrium Lattice Systems: Theoretical Foundations. World Scientific, Singapore (2008)

    Book  Google Scholar 

  22. Tilman, D.: Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. U. S. A. 101(30), 10854–10861 (2004)

    Article  ADS  Google Scholar 

  23. Adler, P.B., HilleRisLambers, J., Levine, J.M.: A niche for neutrality. Ecol. Lett. 10(2), 95–104 (2007)

    Article  Google Scholar 

  24. Lambert, A.: Population dynamics and random genealogies. Stoch. Models 24(S1), 45–163 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (2009)

    Google Scholar 

  26. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  27. Den Hollander, F. Large deviations. Am. Math. Soc., 2008.

  28. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(1), 1–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. Bovier, A.: Eur. Math. Soc. Zurich. Metastability: a potential theoretic approach. International Congress of Mathematicians III, 499–518 (2006)

    MathSciNet  Google Scholar 

  30. Bianchi, A., Bovier, A., Ioffe, D.: Sharp asymptotics for metastability in the random field Curie-Weiss model. Electron. J. Probab. 14(53), 1541–1603 (2009)

    MATH  MathSciNet  Google Scholar 

  31. J. T. Cox and A. Greven. The finite systems scheme: an abstract theorem and a new example. Measure-valued processes, stochastic partial differential equations, and interacting systems (Montreal, PQ, 1992), 55?67, In: CRM Proceeding Lecture Notes, 5, American Mathematical Society , Providence, RI, 1994.

  32. Greven, A., Limic, V., Winter, A.: Representation theorems for interacting Moran models, interacting Fisher-Wright diffusions and applications. Electron. J. Probab. 10(39), 1286–1356 (2005)

    MathSciNet  Google Scholar 

  33. Budhiraja, A., Dupuis, P., Maroulas, V.: Variational representations for continuous time processes. Ann. Inst. Henri Poincaré Probab. Stat. 47(3), 725–747 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Falcone, M. Numerical solution of dynamic programming equations. Appendix A. In: Bardi, M., and Capuzzo-Dolcetta, I. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, 1997.

  35. Kushner, H.J., Dupuis, P.: Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, dordrecht (2001)

    Book  MATH  Google Scholar 

  36. Hanggi, P.: Escape from a metastable state. J. Stat. Phys. 42(1–2), 105–148 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  37. Durrett, R.: Coexistence in stochastic spatial models. Ann. Appl. Probab. 19, 477–496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. McClain, C.R., Barry, J.P.: Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91(4), 964–976 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

AM acknowledges Cariparo foundation for financial support. We thank Miguel Muñoz for useful discussions, comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Formentin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borile, C., Pra, P.D., Fischer, M. et al. Time to Absorption for a Heterogeneous Neutral Competition Model. J Stat Phys 156, 119–130 (2014). https://doi.org/10.1007/s10955-014-0989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0989-8

Keywords

Mathematics Subject Classification (2000)

Navigation