Skip to main content
Log in

Attaining the Optimal Gaussian Diffusion Acceleration

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Sampling from probability distributions in high dimensional spaces is generally impractical. Diffusion processes with invariant equilibrium distributions can be used as a means to generate approximations. An important task in such an endeavor is to design an equilibrium-preserving drift to accelerate the convergence. Starting from a reversible diffusion, it is desirable to depart for non-reversible dynamics via a perturbed drift so that the convergence rate is maximized with the common equilibrium. In the Gaussian diffusion acceleration, this problem can be cast as perturbing the inverse of a given covariance matrix by skew-symmetric matrices so that all resulting eigenvalues have identical real part. This paper describes two approaches to obtain the optimal rate of Gaussian diffusion. The asymptotical approach works universally for arbitrary Ornstein–Uhlenbeck processes, whereas the direct approach can be implemented as a fast divide-and-conquer algorithm. A comparison with recently proposed Lelièvre–Nier–Pavliotis algorithm is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Complex eigenvalues cannot be ordered. The continuous dependence of one particular eigenvalue and its associated eigenvector among other eigenpairs therefore has to be carefully discerned.

  2. We remark that fitting these data with polynomials of higher degrees would be of little avail. It can easily be checked numerically that the coefficients associated with the higher degree terms are nearly zero.

References

  1. Acker, A.F.: Absolute continuity of eigenvectors of time-varying operators. Proc. Am. Math. Soc. 42, 198–201 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amit, Y.: On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions. J. Multivar. Anal. 38(1), 82–99 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amit, Y.: Convergence properties of the Gibbs sampler for perturbations of Gaussians. Ann. Stat. 24(1), 122–140 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amit, Y., Grenander, U.: Comparing sweep strategies for stochastic relaxation. J. Multivar. Anal. 37(2), 197–222 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhattacharya, R., Denker, M., Goswami, A.: Speed of convergence to equilibrium and to normality for diffusions with multiple periodic scales. Stoch. Process. Appl. 80(1), 55–86 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, T.L., Hwang, C.R.: Accelerating reversible Markov chains. Stat. Probab. Lett. 83, 1956–1962 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, T.L., Chen, W.K., Hwang, C.R., Pai, H.M.: On the optimal transition matrix for Markov chain Monte Carlo sampling. SIAM J. Control Optim. 50(5), 2743–2762 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chu, M.T.: On constructing matrices with prescribed singular values and diagonal elements. Linear Algebra Appl. 288(1–3), 11–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chu, M.T.: A fast recursive algorithm for constructing matrices with prescribed eigenvalues and singular values. SIAM J. Numer. Anal. 37(3), 1004–1020 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chu, M.T., Golub, G.H.: Inverse eigenvalue problems: theory, algorithms, and applications. Numerical mathematics and scientific computation. Oxford University Press, New York (2005)

    Book  Google Scholar 

  11. Cline, R.E., Plemmons, R.J., Worm, G.: Generalized inverses of certain Toeplitz matrices. Linear Algebra Appl. 8, 25–33 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Davis, P.J.: Circulant matrices. Pure and applied mathematics. A Wiley-Interscience Publication, New York (1979)

    MATH  Google Scholar 

  13. Franke, B., Hwang, C.R., Pai, H.M., Sheu, S.J.: The behavior of the spectral gap under growing drift. Trans. Am. Math. Soc. 362(3), 1325–1350 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frigessi, A., Hwang, C.R., Younes, L.: Optimal spectral structure of reversible stochastic matrices, Monte Carlo methods and the simulation of Markov random fields. Ann. Appl. Probab. 2(3), 610–628 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hermosilla, A.Y.: Skew-symmetric Gaussian diffusions. In: Proceedings of the Third Sino-Philippine Symposium in Analysis, Quezon City, 2000, Special Issue, pp. 47–59, (2000).

  16. Hwang, C.R., Sheu, S.J.: On some quadratic perturbation of Ornstein–Uhlenbeck processes. Soochow J. Math. 26(3), 205–244 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Hwang, C.R., Hwang-Ma, S.Y., Sheu, S.J.: Accelerating Gaussian diffusions. Ann. Appl. Probab. 3(3), 897–913 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hwang, C.R., Hwang-Ma, S.Y., Sheu, S.J.: Accelerating diffusions. Ann. Appl. Probab. 15(2), 1433–1444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kato, T.: Perturbation theory for linear operators. Classics in mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Google Scholar 

  20. Kontoyiannis, I., Meyn, S.P.: Geometric ergodicity and the spectral gap of non-reversible Markov chains. Probab. Theory Related Fields 154(1–2), 327–339 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lelièvre, T., Nier, F., Pavliotis, G.A.: Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Stat. Phys. 152, 237–274 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Math. Contemp. 19, 1–29 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24(1), 101–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Metafune, G., Pallara, D., Priola, E.: Spectrum of Ornstein–Uhlenbeck operators in \(L^p\) spaces with respect to invariant measures. J. Funct. Anal. 196(1), 40–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mira, A.: Ordering and improving the performance of Monte Carlo Markov chains. Stat. Sci. 16(4), 340–350 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pai, H.M., Hwang, C.R.: Accelerating Brownian motion on N-torus. Stat. Probab. Lett. 83, 1443–1447 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Roberts, G.O., Rosenthal, J.S.: Variance bounding Markov chains. Ann. Appl. Probab. 18(3), 1201–1214 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sramer, O., Tweedie, R.L.: Geometric and subgeometric convergence of diffusions with given distributions, and their discretizations. (1997). Unpublished manuscript

  29. Taussky, O.: Positive-definite matrices and their role in the study of the characteristic roots of general matrices. Adv. Math. 2, 175–186 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  30. Trefethen, L.N., Bau III, D.: Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  MATH  Google Scholar 

  31. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, (2009)

Download references

Acknowledgments

This research was supported in part by the National Science Foundation under Grant DMS-1014666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Jhih Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SJ., Hwang, CR. & Chu, M.T. Attaining the Optimal Gaussian Diffusion Acceleration. J Stat Phys 155, 571–590 (2014). https://doi.org/10.1007/s10955-014-0963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0963-5

Keywords

Navigation